
Center of Logistics and Expert Systems (CLE) GmbH, Salzgitter, Germany 2001
©CLE

JAVAGRID: AN INNOVATIVE SOFTWARE FOR HPCC A PAPER FOR
ECCOMAS COMPUTATIONAL FLUID DYNAMICS CONFERENCE,

SWANSEA 2001

Jochem Hauser*, Thorsten Ludewig*, Torsten Gollnick*, and Roy D. Williams
ââ

*Dept. of High Performance Computing
Center of Logistics and Expert Systems (CLE) GmbH

Salzgitter, Germany
Email: info@cle.de, web page: http://www.cle.de/cfd/

âCenter of Advanced Computational Research
California Institute of Technology

Pasadena, U.S.A.
web page: http://www.cacr.caltech.edu/

Key words: Java HPC, client-server computation, OOP, Internet-based computing,Internet-based
data access, diverse scientific and engineering disciplines, collaborative engineering, portable
HPC and geometry framework, legacy code integration, architecture independence, HPC without
libraries, complex 3D geometries , just in time solver, remote visualization and X3D.

Abstract.
In this paper we describe theJavaGrid concept that underlies the software developed for high
performance computing and communication in science and engineering.JavaGridprovides a package for
parallelization based on Java threads, a geometry package for handling 2D and 3D structured as well as
unstructured grids, a generic solver and a solver template to model a system of integral conservation
laws.JavaGridprovides both client and server software and allows to send a specific solver at run time
from the client to the server, overriding the server's default solver. For instance, this might be a
computational fluid dynamics solver, while the client wishes to execute an electrodynamics solver.
However, both solvers could be based on the template solver provided. Setting up a new solver is a
straightforward process, since only the physics equations have to be implemented for a single subdomain.
Geometry handling, parallelzation (i.e. updating the boundary of neighboring subdomains) and
communication is handled by JavaGrid. It is also possible to incorporate so called legacy solvers, written
in other languages. A Virtual Visualization toolkit for remote visualization is also provided. The paper
describes the current status of the JavaGrid project and presents performance figures.

1

Jochem Hauser, Thorsten Ludewig, Torsten Gollnick, Roy D. Williams

1 DISCIPLINE: HIGH PERFORMANCE COMPUTING AND
COMMUNICATIONS ON THE INTERNET

This is an age of possibility, and information technology is the driving force behind this
change that occurs on a global range.High Performance Computing and Communications
(HPCC) is one of the key technologies of the new economy, [1]. The bandwidth of the
Internet will increase rapidly over the next five years, and a communication speed of 1 Gbit/s
should be available in 2005, perhaps even earlier. Software that makesHPC possible on the
Internet is the enabling technology for computer simulation in many areas of science and
engineering.

The need for accurate three-dimensional simulation in numerous areas of computationally
intensive industrial applications as well as in many fields of engineering and science,
including the rapidly evolving field of bioscience, requires the development of ever more
powerful HPCC resources for a computational Grid based on the Internet.

During the last five years there has been enormous change in computing and
communications hardware. In the midst of these demands and changes the question arises how
to build the simulationsoftware capable of exploiting the new hardware, dealing with
complex three-dimensional geometries, running in parallel, being platform (architecture)
independent, and being able to access geographically distributed computational resources via
the Internet. In addition, the questions of geometric modeling of complex configurations
(preprocessing stage) and visualization of computed results arise (post-processing).
Visualization and solution feature extraction along with data extraction and compression are
of prime importance to deliver the relevant information to the design engineer.

To satisfy the above demands along with the additional requirements of code parallelism,
code maintainability and portability, code security, graphics user interfaces (GUI), and data
base connectivity to visualize or access data that is distributed over different computer
architectures connected by the Web, requires a completely new approach. With procedural
programming languages like Fortran or C or even C++, these goals cannot efficiently be
achieved.

Attempts have been made to provide such a computational Grid, see [2, 3], by developing a
special computational infrastructure, providing both services and programming tools. With
the advent of the Java language in 1996, a general object-oriented programming tool is
available that provides full coverage of all programming needs on the Internet and also
ensures security. Thus the computational Grid for the Internet can be built entirely in Java in a
transparent, object-based approach, termedJavaGrid. This includes high-performance
(parallel) computing [4-14] as well as data intensive computing utilizing the available
computing platforms and network infrastructure.

JavaGrid also provides the services for complex geometry handling - applications in

2

Jochem Hauser, Thorsten Ludewig, Torsten Gollnick, Roy D. Williams

science and engineering very often require dealing with complex 3D geometries.
Visualization of data is managed by a Virtual Visualization Toolkit, based on Java3D.

The construction ofJavaGrid provides full portability to any computing platform, and, at
the same time, has the infrastructure in place to couple so called legacy solvers from other
languages throughRMI over IIOP, CORBAor JNI [5] . In addition, all necessary layers for
geometry handling, parallelization, scheduling, Internet connectivity, and post processing in
form of the Virtual Visualization Toolkit (VVT) are provided in the framework ofJavaGrid.
Hence, asolveronly needs to contain the physics and the numerics of the simulation task for a
single block or a single domain(subdomain). In other words, such a solver does not need to
know anything about the geometry data or the parallelization, and thus has a very simple
structure. It can be tested independently before its integration.

2 SCOPE OF JAVAGRID

JavaGrid is a revolutionary computing software that dramatically improves the ability to
quickly create new kinds of software systems across the whole field of science and
engineering embedded in a Web-based environment.JavaGrid is a software platform and
virtual computing environment that enables scientific and engineering computation of large-
scale problems in a Web-based computational grid environment, integrating computer
resources at different, geographically distributed, sites.JavaGridenables the user to create his
simulation software at the client site at run time by using a Java based browser GUI. The
solver package composed by this GUI is sent in binary form to the server site, replacing the
default simulation solver package.

JavaGrid is a completely Java based software environment for the the user/ developer of

HPC software.JavaGrid takes care of the difficult tasks of handling very complex geometries
(aircraft, spacecraft, biological cells, semiconductor devices, turbines, cars, ships etc.) and the
parallelization of the simulation code as well as its implementation on the Internet.JavaGrid
builds the computational Grid, and provides both the geometry layer and parallel layer as well
as an interface to attach any arbitrary solver package to it.JavaGrid is implemented on the
client site, where the user resides, and on the compute server where the computations are to be
performed. It also can access one or more data servers, distributed over the Internet. A default
solver package resides on the server site. For instance, this may be a fluid dynamics solver. If
the client decides that it will use this solver, only the necessary data has to be collected and
sent to the server. In case a totally different solver is needed, e.g., a solver for Maxwell's
equations to compute, for instance, the electromagnetic signature of a ship or aircraft or to
simulate the trajectories of an ionized plasma beam of an ion thruster, the correct solver object
has to be sent from the client to the server at run time. As described above, the new solver is
created through the GUI at the client site at run time. This solver object is sent in binary form
to ensure code security. If the solver object is written in Java, the Remote Method Invocation
(RMI) class is used, if not, the Common Request Broker Architecture (CORBA) or the Java
Native Interface (JNI) is employed to integrate so called legacy solvers. The server does not
need to know anything about the solver as long as the solver interface is correctly

3

Jochem Hauser, Thorsten Ludewig, Torsten Gollnick, Roy D. Williams

implemented and any kind of simulation application is supported. The parallelization is
entirely based on the Javathreadconcept (see next chapter for details). This thread concept
has substantial advantages over thePVM or MPI library parallelization approach, since it is
part of the Java language. Hence, no additional parallelization libraries are needed.

JavaGrid also provides a third layer, the solver package layer, to be implemented on the
client. This layer is a Java interface, that is, it contains all methods (functions in the context
of a procedural language) to construct a solver whose physics is governed by a set of
conservation laws. An interface in the Java sense provides the overall structure, but does not
actually implement the method bodies, i.e., the numerical schemes and the number and type of
physical equations. ThisJavaSolverInterfacetherefore provides the software infrastructure to
the the other two layers, and thus is usable for a large class of computational problems. It is
well known that the Navier-Stokes equations (fluid dynamics), Maxwell's equations
(electromagnetics, including semiconductor simulation) as well as Schrödinger's equation
(quantum mechanics) can be cast in such a form. Thus, a large class of solvers can be directly
derived from this concept. The usage of this solver package, however, is not mandatory, and
any solver can be sent by theclient at run time. All solvers extend thegeneric solverclass,
and in case a solver does not need to deal with geometry, the generic solver class is used
directly, instead of the conservation law solver class.

JavaGridprovides the coupling to any existing solver, but freeing this solver from all the
unnecessary burden of providing its own geometrical and parallel computational
infrastructure.

Because of Java's unique features, JavaGrid is completely portable, and can be used on any
computer architecture across the Internet.

3 OBJECTIVES OF JAVAGRID

In the following we will outline theJavaGridobjectives. JavaGridpromises to provide the
combined power of networked computational resources for solving most complex scientific
and engineering problems both in geometry and in physics. The grid comprises clients, a
server (SMP parallel architecture), and data servers.

The concept ofJava Spacesallows the extension to distributed compute servers or a farm
of compute servers, but this would come on top of the currentJavaGridand is not pursued in
this proposal.

Clientsare used to communicate the solver classes in binary form to the server at run time
replacing the default solver located on the server, that is, the kind of solver being used is only
determined at run time. In addition, clients are used for steering or navigating the simulation
application as well as for visualization.Clients have their own identity, that is, once this
identity has been established, any computer on the Internet can be used to run this client
process.

4

Jochem Hauser, Thorsten Ludewig, Torsten Gollnick, Roy D. Williams

Java is the language of choice for High Performance Computing and Communications
because of its unique features with its built inthreads for parallelization and its highly
performant and efficientsocketprogramming as well asRemote Method Invocation(RMI) [5]
to facilitate communication.JavaGrid will comprise computational resources connected by
the Internet to create a universal source of computing power, forming a computational grid.

The complexity of the computational grid is hidden from the user and/or the developer that
is, no knowledge of the underlying infrastructure is needed. Java packages are available that
provide the handling of complex three-dimensional geometries both for structured as well as
for unstructured grids, a parallel framework for dynamic loadbalancing, a framework for the
set up and the numerical solution of the governing physical equations, a graphics user
interface for collecting input along with the framework to obtain the geometry data that might
reside on geographically distributed computers. and a visualization package based on the
Java3D standard.

Thus, the developer can concentrate on the scientific components of his problem focusing
on the equations that describe the physics.JavaGridalso provides a library to computing the
solutions of physical systems that are expressed as a system of hyperbolic conservation laws,
meaning that each equation of the system corresponds to a physical quantity that is generally
conserved. For example, the system may be governed by the conservation of energy,
momentum, and mass. Mass conservation may be extended to conservation of individual
molecular or atomic species rather than just total mass.

We envision a layered architecture, where each package is implemented in terms of the
packages below. There will be a GUI package, which instantiates objects from thephysics-
numericspackage, which is implemented with thesolverpackage, which is implemented in
turn by the parallel and geometry (structured multi-block and unstructured grids) packages.

Since theJavaGrid strategy is based on the concept of functional layers, thesolver layer
could be omitted, using thegeometryandparallel layers only. In this way, a different system
of physical equations could be implemented, interfacing a new physics-numerics package to
the geometry and parallel packages. TheJavaGrid could also be reduced to thegeometry
package if the developer decides to interface his own parallel package.

4 SPECIAL APPLICATION OF JAVAGRID

In this paper, for details see below, a special application is foreseen that serves a large
number of simulations application in many fields of science and engineering.JavaGrid
provides a special framework for these applications, substantially facilitating the development
of new simulation software in different areas, simply by extending existing classes.

It should be noted that a very wide class of scientific and engineering problems is covered

5

Jochem Hauser, Thorsten Ludewig, Torsten Gollnick, Roy D. Williams

by the currentJavaGrid approach, ranging from quantum mechanics, internal and external
compressible as well as incompressible flows, including chemically reacting flows, and
radiation as well as turbulent flows. In addition, Maxwell's equations or the magneto-
hydrodynamics equations can be cast in this form, too. Many problems in the rapidly evolving
field of bioscience fall under this category, too.

All these problems can be described by the general case of a nonlinear system of
hyperbolic conservation laws. Diffusion processes can be included as well. Since hyperbolic
laws are marked by a finite propagation speed, fluxes have to be calculated. The physical
interpretation of these fluxes depends on the problem to be simulated. The fundamental
structure of the simulation model, however, remains unchanged. Fluxes can always be
partitioned in their hyperbolic (finite propagation speed) part and other processes like
diffusion, dispersion etc. A transformation will be used from physical space to computational
space that comprises a set of connected blocks (regular shaped boxes for structured grids) or a
set of connected domains (equal size, unstructured grid). The boundaries of neighboring
blocks or domains are connected by a set of halo cells (very often two halo cells are used, i.e.,
there is an overlap of two cells between any two neighboring blocks or domains), but this
number can be specified at run time.

5 STRUCTURE OF JAVAGRID

Figure 1 JavaGrid: Architecture Overview

The objective of this work is to develop, demonstrate and verify advanced object-oriented
Java packages both for theclient and server sites as part of the on-going, long-term IT
research program, addressing a wide variety of HPCC issues. Applications include handling
of arbitrary complex three-dimensional geometries, a general, solver independent,
parallelization layer based on the Javathread concept providing automatedstatic and
dynamic loadbalancing, a Java templategeneric solverbased on the integral conservation law
approach, a Java wrapper class solver for integrating solvers (legacy code) written in a
different programming language, and a Java based compressible flow solver including

6

Internet
 or

Intranet

Solver/Code Development

Visualization

Collaborative Engineering

Server

Session-ID

Session-ID

Session-ID

Session-ID

Jochem Hauser, Thorsten Ludewig, Torsten Gollnick, Roy D. Williams

nonequlibrium gas dynamics for high speed flows as well as post processing visualization and
steering software for client-server interaction.

TheJavaGridsoftware comprises ten major packages, described below. It should be noted
that some software packages are installed on the client side only, while others are installed on
the server side, and some packages are shared. Multiple sessions are possible, i.e., the server
can communicate with more than one client at a time. Client and server architectures need to
be connected via the Internet. Input data may be retrieved from a file or a URL and can be
located at any of the clients, the server, or somewhere on the Web.

5.1 GUI Browser and Graphics User Interface

5.1.1 Solver GUI Browser

Figure 2 This picture shows the current status of JavaGrid: Client Graphical User Interface (GUI)
with an opened class browser dialog for selecting the solver class to be used.

This browser GUI lets the user interactively create his application software at the client
site. The solver GUI browser will interact with the solver construction process in that it lets
the user select thesolverandcell classes (finite volume if needed) to be added to the actual
client package.

In that way, the ability to create the proper simulation software package at run time at the
client site is accomplished. This solver class will be added to the client package and then be
sent through the Web to theserversite, replacing theserver default solver. Thus, it is possible
to dynamically create solver packages for many different applications that automatically have
access to the geometry package and automatically run in parallel on the target architecture,

7

Jochem Hauser, Thorsten Ludewig, Torsten Gollnick, Roy D. Williams

without the usage of a parallelization library and without any parallelization effort for the
solver software. Complete data security is maintained through Java's built in security
mechanism.

5.1.2 Graphics User Interface
This GUI provides the interface between the user and theJavaGrid collecting the

information to run the parallel application. On the other hand, the GUI also provides
guidelines for the user to facilitate the usage of the application. The user starts a session and
obtains a session ID that subsequently can be used to access the server from any other
machine connected to the computational grid anywhere on the Internet.

5.2 Geometry Package

The geometry package allows the handling of arbitrarily complex grids. The solver
package only needs to know a single domain, i.e., the geometry handling and the
parallelization is taken care of by these twoJavaGridlayers. A solver package can be in Java
or in any other language. If the solver is written in Java, theRMI methods implemented in the
parallelization layer will provide the communication for the computational grid. Any other
language is interfaced to the JavaGrid environment through a wrapper class and CORBA.

5.2.1 Structured Grid Domains
Any structured multiblock grid written in NASA standard formatPlot3D will be

supported. The connectivity information between subdomains or blocks is automatically
reconstructed form the grid point coordinates.

5.2.2 Unstructured Grid Domains
Unstructured hexahedra grids are supported, for instance, theNastranor StarCDformat is

supported. The domain decomposition is done internally, based on a recursive bisection
algorithm as described in [26]. It is foreseen to also support other element types, such as
tetrahedra, prisms, or pyramids since only the number of faces and the computation of the
volume need to be changed, the overall class structure of a cell remains the same.

5.2.3 Metric Computation
JavaGrid expects the grid point coordinates either in form of a set of blocks (NASA

Plot3D format) or in form of an unstructured grid in Nastran or StarCD format. For a
multiblock grid, block connectivity is reconstructed from grid point coordinates. The
incorporation of other data formats is relatively easy and filters can be integrated in the input
class. For each cell the complete metric information is computed, i.e., its midpoint
coordinates, volume, face values, and normal vectors. It is assumed that the conservation laws
are solved in computational space and therefore all necessary first and second derivatives are
numerically computed and made available to the solver class. Thus the solver does not need
to know about geometry.

8

Jochem Hauser, Thorsten Ludewig, Torsten Gollnick, Roy D. Williams

5.3 JavaGrid Parallelization Package

Multithreading is the way inJavaGridto get improved performance from a code, because
all modern machines have extra processors that can run the extrathreads. But in C is it much
more difficult to manage threads than it is in Java therefore programmers simply do not use
threads very much. But in Java, it is very easy to spawn a new thread, and therefore use of
threads is much more natural and widespread.

5.3.1 JavaGrid Execution Strategy
An architecture independent execution strategy forJavaGrid is implemented in this

package. In order to execute theJavaGrid along with the specified solver code, a series of
events on both theclient and theserver, as described below, is needed. In this package, these
stages are implemented in form of three packages, denoted as client, server, and share.

[Server: compile server programs] Compile (javac) the Java files (extension .java) of the
server module on the server.

[Client: compile client programs] Compile the Java files on the client.
[Server: generate stub and skeleton codes using rmic compiler]Generate the stub

(client) and skeleton (server) code by running the rmi compiler (rmic) on the server and
copy the stub code to the client. The stub code contains the signatures of the remote
methods and provides the necessary information for the client code.

[Server: registry setup] Start theregistry to enlist all remote objects on the server. A
server object is registered by giving a reference and a name (unique string) to the
registry.On the client theNaming.lookup()method of the stub code accesses the remote
object on the server by giving the server name inURL format, combined with the name
of the server object, as has been registered in the registry.

[Server: object registration (binding)] Start the code that registers (binding) all objects
of class implementation on the server, i.e. the JpMaster process.

[Client: remote object lookup] Start a program that looks up the registered remote server
objects. TheJpClientcan then manipulate these remote objects by invoking methods,
and create new remote objects.

5.3.2 Client Package
In this package the general structure of theclient package is developed. The approach is

based on theclient-serverconcept and thus allows to perform a parallel computation using the
Internet. Thestub class, see next Section, along with theclient code resides on theclient
computer, and theskeletonclass is on theservermachine. The communication betweenclient
and server takes place through these two objects. In the last step, the code on theclient is
started using the samermi address, see next Section, Since bothclient andserverknow the
shared interfacecode that contains aninterfacefor the JPSolverclass, implemented on the
client site, theclient can send its own solver object at run timeto replace the default solver
on the server site.

9

Jochem Hauser, Thorsten Ludewig, Torsten Gollnick, Roy D. Williams

5.3.3 Server Package
In this package the general structure of theserver package is implemented to establish

communication on theserverside. To this end, the compiler forRemote Method Invocation
objects,rmic, - the rmic is part of the Java Development Kit (JDK) - has to be evoked to
produce thestubandskeletonclasses, needed for communication betweenclient andserver.
Thestubclasses, then, are implemented on theclient. Next, the so calledrmiregistry is started
on the server to register all objects that can perform communication. Thermiregistry
command is used for this purpose. In general, the registry now is ready to communicate over
port 1080 and listens to communication requests. In the next stage, theservercode is started
and the objects for communication are actually registered. When theserver is started an
address is supplied in form of anrmi address, i.e.rmi://hostname/RMIObjectwherehostname
is the name of theserver.The RMIObjectname can be any name, but it must be the same
name for bothclient and server. A domain name service (DNS) must be enabled that
translates this name into a valid internet protocol (IP) address. Theserver knowing the
interface of theJPSolverobject, has the necessary information about the signature of all
solver methods (in non-object oriented terminology methods are referred to as functions) and
thus knows how to handle the solver object. TheJavaGridparallel framework does not know
anything about the numerics or physics implemented in a solver object. It provides, however,
the necessary parallel infrastructure for all solver objects that implement theJPSolver
interface. Hence, parallelization is done once and for all, and very different solver objects can
be constructed, resulting in a parallel code that solves problems for a wide range in science
and engineering.

5.3.4 Share Package
The shared part is in form of a Javainterface that has to be implemented by either the

client or the server. It contains all Javainterfacesneeded by both theclient and theserverto
enable the communication over the Internet.

5.3.5 Inter-Domain Communication and Synchronization
For the integral conservation law solver, essentially, each subdomain or block of the

computation is alternating between computation and data exchange.
The concept of ghost or halo points, is used to model the overlap between neighboring

domains or blocks. These subdomains have to communicate after each iteration step to update
their boundary (ghost) points. In this regard, parallelization is simply done by introducing a
new (interblock) boundary condition. For a multiblock solver, this condition was already
present in the sequential code, because complex geometries had to be modeled using the
multiblock concept. It should be noted that the multiblock concept, beside numerical
advantages, is not subject to the severe performance reduction caused by frequent cache
misses for some modern architectures.

In JavaGrid, subdomains or blocks are connected via edges (2D) or faces (3D), but not via
vertices. That means, communication takes place only across edges, but not across diagonals.
Hence, each block is connected to at most four neighbors in 2D (six neighbors in 3D). If only

10

Jochem Hauser, Thorsten Ludewig, Torsten Gollnick, Roy D. Williams

first derivatives have to be computed numerically, diagonal points are not needed. However,
for second derivatives the computational stencil needs these diagonal values. Since
communication does not take place across diagonals, these values are not explicitly updated.
Therefore, a different computational stencil is implemented that computes the missing value
from its neighbors, omitting the diagonal value. The scheme retains the same numerical order,
but the truncation error changes. For instance, if viscous terms have to be computed in the
Navier-Stokes equations, this practice has shown to be both accurate and effective. In this
regard, there is a minor difference between the sequential and the parallel numerical
algorithms.

The compute phase consists of computing fluxes at cell boundaries, then adding
(subtracting) the incoming (outgoing) flux from the values of the primitive variables in each
cell.

5.3.6 Macroscopic and Microscopic Parallelization
Multithreading provides a unique advantage, namely that it allows for both macroscopic

and microscopic parallelization, a concept explained below.
Independent on the gridding structure of the solution domain, eventually a set of

subdomains is obtained. For an unstuctured grid, a recursive bisection algorithm is used to
generate subdomains of equal size with boundaries minimizing communication. For a
structured grid, a set of blocks is available from the grid generator. These blocks are of
different size, but blocks could be grouped to form subdomains of equal size. The only
differenece between structured and unstructured subdomains is the way the individual cells
(finite volume) have to be accessed and their neighboring cells to be found. In Java, the
concept ofcollectionas a general datastructure is available, providing so callediterators to
access individual elements. Thus, the differences between unstructured or structured grids are
marginal, existing only at the level of theiterator. Therefore, each subdomain is run within its
own thread, completely independent of all other threads. The mapping of threads onto the set
of processors as well as thread scheduling is entirely left to the underlying operating system.
The issues of static and of dynamic loadbalancing are not the concern of JavaGrid.

Within the thread of a subdomain, additional threads can be started to parallelize the
numerical algorithm itself. A strategy will be worked out for both parallel scaling and
optimizing parallel speedup. On the one hand, a larger thread pool leads to a better usage of
the processors, on the other hand, thread administration causes overhead. In Java, thread
creation is straightforward and tens of thousands of threads are possible. In principle, a thread
for each cell could be started. Architectures like the Tera machine, support the thread concept
by dedicated hardware, for instance, each processor of the Tera machine runs 128 hardware
threads.

With the thread concept as parallelization, there is an unlimited number of options to speed
up parallelization, since parallel fine tuning by threads on all levels of a computation is
feasible.

11

Jochem Hauser, Thorsten Ludewig, Torsten Gollnick, Roy D. Williams

5.4 JavaGrid Generic Solver Package

This package provides ageneric solverpackage from which more specific solvers, such as
a solver based on conservation law formulation can be derived.

5.4.1 Generic Solver Class
There is ageneric solverclass,JpSolver, whose task is to provide the general structure of a

solver, simplifying the programming of a new solver or allowing the "modernization" of a
legacy code by wrapping it inside the appropriate structure. A solver class for a structured
multiblock grid (here a grid is a collection ofgrid pointsthat describe the solution domain) or
an unstructured grid can be extended from thisgeneric solverclass. The numerical solver is
based on an integral formulation and thus a description of a cell class is needed.

The generic solver class from which the numerical solver class is derived does not know
anything about grids or fluxes etc. However, a template implementation (Javainterface) for a
general conservation law solver is provided, making it straightforward to design the proper
fluxes, limiter, and cell methods for a specific implementation.

Thegeneric solverclass has to be used in case a gridless (i.e., no grid points are needed)
simulation application (e.g., parallel Mandelbrot computation, see below) was to be
implemented.

5.5 Conservation Law Solver Package

Extending thegeneric solverconcept one step further is thetemplate solverpackage,
implementing a set of integral conservation laws. We deal with a geometrically complex
domain G. Conceptually, G is a compact, smooth manifold that is a subset ofdim-dimensional
Euclidean space, where dim is called the dimension of G, and is usually 2 or 3. G may be
represented by a manifold of lower dimensionally (e.g. axisymmetric geometry), which we
call the representation dimension if it is necessary to distinguish it from the domain
dimension.

In the template solverpackage, the classes have physical names, for example, in a flow
solver TurbulentEnergy, Flux, Limiter, and so on. Here it is decided whether to use implicit or
explicit methods, it is decided if convergence has happened and also if a special submodel
should be used. In thetemplate solverpackage, there are implemented various kinds of flux
limiters, but it is in thephysicspackage that it is decided which one to use. Also, in the
template solverpackage are ways to switch on and off certain kinds of activity on a cell-by-
cell basis, but it is in thephysicspackage that we set the criteria by which this masking
happens.

5.6 Java Based Compressible Fluid Dynamics Solver

In this package a compressible flow solver is implemented, filling out the method bodies of
the template solver. JparNSSis a Java based flow solver, following the strategy developed in

12

Jochem Hauser, Thorsten Ludewig, Torsten Gollnick, Roy D. Williams

[8-12] for the turbulent compressible Navier-Stokes equations that uses the geometry and
parallelization layers of theJavaGrid environment. This code serves as the large-scale
example solver, demonstrating the interfacing of a complex conservation law based solver to
JavaGrid. The solver resides on theclient computer and replaces the default solver on the
servercomputer at run time, i.e., only the binary solver classes are sent from the client to the
server, thus guaranteeing security. Here it is assumed that both theclient andserverobjects
are written in the Java language.

5.7 Integration of Existing Solvers

In general, there exist many different legacy solvers, but in principle all can be wrapped by
a Java layer, while the underlying object is written in a different language. Communication
must be possible between the Java object and the foreign object, regardless of what language
it was originally written in.

5.7.1 CORBA Based Interface to Existing Solvers
In order to achieve this goal, the "common object request broker architecture" orCORBA

standard, by the Object Management Group or OMG (www.omg.org) defines a common
mechanism for interchanging data between clients and server. The Object Request Broker
(ORB) acts as a kind of universal translator for interobject communication. Objects do not talk
directly to each other but use object brokers that are located across a network, communicating
with each other, based on a protocol specification termed Inter Object Protocol (IOF).

The Interface Definition Language (IDL) is used to specify the signatures of the messages
and the data types that objects can send. IDL have a very similar look and feel compared to
Java interfaces. An IDL specification will be applied for an object written in Fortran and C,
namely a Fortran/C compressible flow solver. This will serve as a complex demonstration that
so called legacy codes can be interfaced with theJavaGrid environment, enabling such a
solver to inherit the full capability of both the geometry and parallel layers implemented in
JavaGrid.

5.7.2 JNI Interface to Existing Solvers
The Java Native Interface (JNI) is the native programming interface in Java that is part of

the JDK. The JNI allows Java code that runs within a Java Virtual Machine (VM) to cooperate
with applications and libraries written in other languages, such as C, C++, FORTRAN, and
assembly. By writing programs using the JNI, theprogrammer ensuresthat the code is
completely portable across all platforms. TheJavaGrid system integrates the legacy codes
directly via shared libraries build upon existing solvers.

5.7.2.1 The Invocation API
In addition, the Invocation API allows to embed the Java Virtual Machine in native

applications. In this case, RMI, the Remote Method Invocation, a pure Java Object
Communication API can be used to interact with the JavaGrid environment.

13

Jochem Hauser, Thorsten Ludewig, Torsten Gollnick, Roy D. Williams

5.8 Gridless Application

The usage of thegeneric solverclass and theparallel layer will be demonstrated by
developing a package for the parallel computation of the Mandelbrot set.

This code tests the self-scheduling of threads. An independent iterative calculation takes
place at each grid point, where the number of iterations varies greatly from point to point. We
partition the solution space into subdomains; where each subdomain is large enough that
thread overhead will be much less than the computational work associated with the
subdomain, but each subdomain should be small enough that there are many subdomains for
each processor.

Although this program is embarrassingly parallel, it exhibits a new feature, namely the
computational load depends on the position within the solution domain, which is a rectangle
in this case. Dynamic load balancing would be needed to run such an application successfully
on a large parallel architecture. UsingPVM or MPI, the user has to provide a sophisticated
algorithm to achieve this feature, requiring a lengthy piece of code. Using the Javathread
concept, dynamic load balancing is provided by the operating system.

6 JAVA NUMERICAL PERFORMANCE AND HPC ARCHITECTURE
COMPARISON

In this chapter the numerical and the parallel (thread) scalability are investigated. The data
presented here can be considered as the continuation of the figures given in [4,5]. Special
emphasis is given to the thread scaling behavior on the various target architectures.

6.0.1 Numerical Performance and HPC Architecture Comparison

First, a brief discussion of Java code generation and code execution is given. From this
discussion, the testing strategy is derived. One of the attractive features of Java is its
portability, the idea of “write once, run anywhere”. The portability is obtained because Java is
generally not compiled to a platform-specific executable, but converted to so-called byte-code,
which is in turn executed by a platform-specific interpreter. While these extra layers of
insulation provide portability, they may have a performance impact. However, many
companies, including Hewlett-Packard, IBM and Sun, offer Java compilers, that create native
code directly, and should provide competitive performance with C or Fortran.

Java runs a garbage-collector thread, reclaiming memory that is no longer needed by the
application. This is additional overhead which takes away resources from the numerical
application, but at the same time it provides an enormous boost to programmer productivity.
The programmer is thinking about the physics of the code instead of spending hours chasing
mysterious memory leaks that always beset large C++ projects.

Although Java programs are statically compiled, there is still a need to do some runtime
checking. In particular, null reference checking, array bounds checking, and runtime type
checking can't be done at compile time. This makes Java programs more robust, but it also

14

Jochem Hauser, Thorsten Ludewig, Torsten Gollnick, Roy D. Williams

makes the generated code a little slower than the equivalent C program. However, many of
these checks can be eliminated at runtime by the native code generator and, for instance, in
[6, 7], it is demonstrated that Java, despite the additional services, can indeed match or even
exceed the speed of corresponding C or Fortran codes.

JDK Release VM type warmup production
time in sec MFLOPS time in sec MFLOPS

56.086 9.628 55.783 9.680
21.387 25.248 21.368 25.271

hotspot - client 37.896 14.249 37.748 14.305
hotspot - server 30.226 17.865 19.993 27.009
hotspot - client 37.066 14.568 37.101 14.554
hotspot - server 25.162 21.460 9.575 56.396

jdk 1.1.8 sunwjit
jdk 1.2.2_07 sunwjit
jdk 1.3.0_02

jdk 1.3.1rc2

Table 1 Sequential matrix multiplication for a 30x30 matrix running 10,000 iterations on a 4
CPU (400MHz) Sun Enterprise 450 using different Java Virtual Machines. The warmup phase is
needed by the so called hotspot VMs to automatically detect the computational intensive parts of
the program.Note that the current hotspot server version, jdk1.3.1rc2, (release candidate 2) of
the new upcoming release 1.3.1 is more than two times faster as the previous.

Compared to the performance figures in [4] where19.31 Mflops were obtained for the
30x30 matrix multiplication utilizing the Java VM version jdk1.2.01 dev 06, the new
jdk1.3.1rc2 provides 56.4 Mflops, which is a threefold increase in execution speed.

Currently several versions ofJavaGrid are being tested generated by different Java
compilers, and run on Linux, Sun, HP, IBM, and SGI architectures. The numerical
performance of the Java fluid dynamics solver,JparNSS, will be measured and compared to a
similar code written in C/Fortran. In addition, the Java test suite for numerical performance
tests, as described in [4, 5], will be extended and the acceleration techniques developed by
Moreira et al. at the IBM Watson Research Center, [6, 7], will be investigated and eventually
implemented in the solver class for integral conservation laws. In addition, the influence of
the operating system on the execution speed will be investigated. It has been observed that,
for instance, the Solaris operating system, constantly improved the thread handling, and thus
led to better multithreading performance.

6.0.2 Thread Scaling and Network Communications Performance
The main emphasis of this activity is to investigate the parallel efficiency of the Java thread

concept. For up to 32 processors, used on the HP-V class machine, excellent parallel
efficiency was obtained for a sufficient number of threads and sufficient computational work
within a thread. With the scientific and engineering problems that we have in mind, in
particular fluid dynamics or bioscience, these requirements are always met. For instance, a
calculation of the flow past a 500 block X-33 configuration or a 5,500 block Ariane 5
launcher utilizes several million grid points. Here, the use of hundreds or even thousands of
processors would be justified. Thus the scaling for a variety of architectures will be
investigated using up to 128 processors. In addition, the I/O performance across the network
for such a large application will be investigated.

15

Jochem Hauser, Thorsten Ludewig, Torsten Gollnick, Roy D. Williams

6.0.2.1 Mandelbrot Set
This code tests the self-scheduling of threads but also provides uneven loads that is, the

computing time for each subdomain depends upon its position and thus requires dynamic load
balancing in order to achieve 100% CPU load. The thread scheduling is left to the Java VM
and the operating system.

Figure 4 Computation of the Mandelbrot set. The solution domain is
performed on a rectnagular grid in the complex plane,
subdivided into a number of rows, each handled by a
thread.

JDK Release VM type warmup production

time in sec time in sec

2.365 75.00% 2.275 75.00% 1.706
6.576 50.00% 6.321 50.00% 3.161

hotspot - client 68.308 25.00% 7.115 25.00% 1.779
hotspot - server 2.001 95.20% 1.403 95.20% 1.336

hotspot - client 82.550 25.00% 2.844 96.10% 2.733
hotspot - server 2.674 95.30% 1.694 95.30% 1.614

cpu load cpu load cpu time

jdk 1.1.8 jit
jdk 1.2.2_07 jit
jdk 1.3.0_02

jdk 1.3.1rc2

Table 4 Mandelbrot set (600x400 picture size, max iteration 3,000, 200 threads) on a 4 CPU
(400MHz) Sun Enterprise 450.

16

Jochem Hauser, Thorsten Ludewig, Torsten Gollnick, Roy D. Williams

JDK Release VM type warmup production

time in sec time in sec

896.112 75.00% 895.203 75.00% 671.402
880.377 88.60% 873.576 88.60% 773.988

hotspot - client 2708.370 25.10% 2674.853 25.10% 671.388
hotspot - server 473.793 96.10% 457.965 96.10% 440.104
hotspot - server 288.140 95.30% 297.660 95.30% 283.670

cpu load cpu load cpu time

jdk 1.1.8 jit
jdk 1.2.2_07 jit
jdk 1.3.0_02

jdk 1.3.1rc2

Table 5 Mandelbrot set (4096x3072 picture size, max iteration 3,000, 1,024 threads) on a 4 CPU
(400MHz) Sun Enterprise 450. It seems that only the new jdk 1.3.1lrc2 hotspot client uses native
threads.

6.0.2.2 Forward Facing Step
Euler compuatations for the forward facing step at Mach are performed.

Figure 5 This Testcase is a Mach 3 Euler flow past a forward facing-step. The simulations are based on
structured multi-block grids. The computation is explicit and first order accurate, and thus does
not too well resolve the expansion region. Shown is the Mach-number distribution

number of cells time in seconds

multi processor (16)
16 121,104 3,246.73 541.13 6.00
16 200,704 6,908.88 1,077.20 6.41
16 484,416 12,905.88 2,720.48 4.74
48 118,803 2,980.93 225.76 13.20
48 202,800 5,190.54 436.09 11.90
48 480,000 12,663.30 1,162.54 10.89

number of
blocks

parallel
speedup

processor

Table 6 HP V-Class: computing times for 320 iterations

17

Jochem Hauser, Thorsten Ludewig, Torsten Gollnick, Roy D. Williams

single processor multi processor (4)
16 121,104 852.79 258.26 3.30
16 200,704 1,571.76 532.74 2.95
16 484,416 4,277.96 1,593.45 2.68
48 118,803 756.24 195.95 3.86
48 202,800 1,409.96 378.61 3.72
48 480,000 3,892.67 1,077.06 3.61

Table 7 Sun Enterprise 450: computing times for 320 iterations

6.1 Internet Based Visualization and Navigating Package

Representation of 3D surfaces is a very challenging issue.JavaGrid is capable of
representing discrete surfaces in discrete triangular or quad format as generated by many
gridgenerators, in particular GridPro. The special loader written, provides a way to visualize
and investigate complex geometries with a thin client; that is, a machine with just a normal
web browser and a reasonably fast connection to the internet. The client is not assumed to
have expensive and complex visualization software installed. The files representing the
simulation data, as well as the visualization software, are installed on the more powerful
server machine.

In JavaGridremote data visualization along with data compression and feature extraction
as well as remote computational steering is of prime importance. SinceJavaGrid allows
multiple sessions, multiuser collaboration is needed. Different visualization modules are
needed, but here a computational fluid dynamics (CFD) module that allows the perusal of
remote CFD data sets was developed, based on the Java3D standard.

18

Jochem Hauser, Thorsten Ludewig, Torsten Gollnick, Roy D. Williams

Figure 6 The Virtual Visualization Toolkit (VVT/ShowMe3D) which is part of JavaGrid, depicting a
shaded triangulated surface of a generic car.

In large simulations, grids with million of cells are computed, producing hundreds of
megabytes of information during each iteration. Depending on the scheme, several thousand
iterations may be needed either to converge to a steady state solution or to simulate a time-
dependent problem. Hence a fast connection is needed to move data to the client where it can
be analyzed, displayed or interacted with to navigate the parallel computation on the server.
Therefore a visual interactive package,termed theVirtual Visualization Toolkit(VVT) is
provided.

A suitably authenticated client sends a request, and this is translated by the server into a
response that may consist of several image files linked together by an index page that
provides captions and other metadata. The request that is sent to the server is an XML
document that instructs the visualization software, that may contain file names, filtering
commands, and the type of visualization software that is to be used. We are considering both
Tecplot and Ensight for this role. The bulk of the request is in the scripting language used by
the chosen software, containing camera angles, isosurface values, colors, and so on; all the
information required to build one or more images of the flow.

Clients with more powerful machines and/or a high bandwidth connection to the server
might like more than images. We would also like to consider sending back to the client a
X3D/VRML file (Extensible 3D the next-generation Virtual Reality Modeling Language

19

Jochem Hauser, Thorsten Ludewig, Torsten Gollnick, Roy D. Williams

based upon XML the Extensible Markup Language). This contains a three-dimensional
description of space, rather than just a two-dimensional image. Viewers are available as a
plug-in to a web browser (eg. Xj3D or Cosmo player), and the x3d package ofJava3Dnow
contains a VRML loader. A client could, for example, select a density isosurface value, and
have the complete surface returned as a X3D/VRML file, which can then be interactively
rotated, zoomed, and viewed within the client's web browser. The intellectual challenge of
this work is to provide the client with a way to effectively form the request. This would take
the form of a dialogue. Initially, there could be a choice of servers and the CFD files they
contain; when a geometry is chosen there might be a choice of flight configurations and flow
variables. Once a particular simulation is chosen, then thumbnail views could be displayed,
generated either as part of the metadata or generated dynamically. The client can then change
parameters with sliders and buttons, and rotate the camera angles through a small
X3D/VRML model of the chosen configuration. The client can think of the request that he is
generating as a multi-page form that he can adjust by going forward or back. The client can
also request the XML document corresponding to the request, for storage or editing.

Once the request is complete, it can be sent to the server for conversion to a visual response
by opening the relevant files by the VVT.

REFERENCES

[1] The Need for Software, Scientific Computing World, August-September 2000, Issue 54,
pp.16.

[2] Science and technology Shaping the Twenty-First Century, Executive Office of the
President, Office of Science and technology Policy, 1997.

[3] Foster, Ian (ed.):The Grid: Blueprint for a new Computing Infrastructure, Morgan
Kaufmann Publishers, 1999.

[4] Häuser, J., Ludewig, T., Williams, R.D., Winkelmann R., Gollnick T., Brunett S.,
Muylaert J.:A Test Suite for High-Performance Parallel Java, Advances in Engineering
Software, 31 (2000), 687-696, Elsevier.

[5] Ginsberg, M., Häuser, J., Moreira, J.E., Morgan, R., Parsons, J.C., Wielenga, T.J. .:
Future Directions and Challenges for Java Implementations of Numeric-Intensive
Industrial Applications, 31 (2000), 743-751, Elsevier.

[6] Moreira, J.E., S. P. Midkiff, M. Gupta,From Flop to Megaflop: Java for Technical
Computing, IBM Research Report RC 21166.

[7] Moreira, J.E., S. P. Midkiff, M. Gupta,A Comparison of Java, C/C++, and Fortran for
Numerical Computing, IBM Research Report RC 21255.

[8] Häuser J., Williams R.D, Spel M., Muylaert J.,ParNSS: An Efficient Parallel Navier-
Stokes Solver for Complex Geometries, AIAA 94-2263, AIAA 25th Fluid Dynamics
Conference, Colorado Springs, June 1994.

[9] Häuser, J., Xia, Y., Muylaert, J., Spel, M.,Structured Surface Definition and Grid
Generation for Complex Aerospace Configurations, In: Proceedings of the 13th AIAA
Computational Fluid Dynamics Conference -Open Forum, June 29 - July 2, 1997, Part 2,

20

Jochem Hauser, Thorsten Ludewig, Torsten Gollnick, Roy D. Williams

pp. 836-837, ISBN 1-56347-233-3.
[10]Häuser J., Williams R.D.,Strategies for Parallelizing a Navier-Stokes Code on the Intel

Touchstone Machines, Int. Journal for Numerical Methods in Fluids 15,51-58., John
Wiley & Sons, June 1992.

[11]Häuser, J., Ludewig, T., Gollnick, T., Winkelmann, R., Williams, R., D., Muylaert, J.,
Spel, M., A Pure Java Parallel Flow Solver, 37th AIAA Aerospace Sciences Meeting and
Exhibit, AIAA 99-0549 Reno, NV, USA, 11-14 January 1999.

[12]Winkelmann, R., Häuser J., Williams R.D,Strategies for Parallel and Numerical
Scalability of CFD Codes, Comp. Meth. Appl. Mech. Engng., NH-Elsevier, 174, 433-456,
1999.

21

