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Introduction and Motivation

Why we like to use Java for writing high-quality portable 
parallel programs?

pure object formulation (i.e. an object representation of a 
wing, fuselage, engine etc. described by a set of classes 
containing the data structures and methods for a specific 
item)

strong typing

exception model

elegant threading

portability
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What is a Thread?

Virtual CPU

Three parts of a Thread:

CPU

Code

Data

CPU

Code Data

A thread or
execution context
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Why Threads are good for CFD

Threads as a general parallelization strategy for CFD 
codes

Advanced numerical schemes in CFD, i.e. GMRES, do 
not require the same computational work for each grid 
cell.

Sophisticated dynamic load balancing algorithms on 
distributed-memory machines
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Java Numerical Performance

"write-once-run-anywhere"

porting Java is certainly easier than porting C, C++, or 
Fortran codes

portability is obtained because Java is generally not 
compiled to a platform-specific executable, but converted 
to so-called byte-code

have a serious performance impact

Hewlett-Packard, IBM, Sun and Tower Technology, offer 
(or will offer) Java compilers, that create native code 
directly

Thus a user has the choice of portability or performance
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Java Numerical Performance

garbage-collector thread is always running

makes Java slower than C

provides an enormous boost to the programmer's 
productivity

Multithreading

a direct parallelization strategy

in C it is more difficult to manage threads

Runtime checking

null reference, array bounds, ...

makes Java programs much more robust
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JParNSS

We are in the process of developing a parallel 
Navier-Stokes flow solver JParNSS, using the principles 
learned from this test suite. 

Thus, the test suite presented here concentrates on two 
performance aspects: 

single-node performance of Java 

speedup (ratio of single-node speed to multiple-node 
speed)
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The Test Machines

HP V-class

32 PA-8200 processors running at 240 MHz, with 16 GByte 
RAM. Each processors has 2 MByte instruction as well as 
data cache

Sun Enterprise E450

SMP architecture, powered by four 300 MHz UltraSPARC II 
processors which are connected by a 1.6-GB/s UPA 
interconnect to 1.7 GB of shared memory

no name PC

a Pentium II with 300MHz running Linux
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The Test Suite

Square Root (parallel efficiency, thread scheduling)

Matrix Multiply (comparison of Java and C code) 

Mandelbrot (thread scheduling and dynamic load 
balancing)

Laplace (domain decomposition and synchronization 
strategies)

JParFw - Java Parallel Framework (client-server concept)

JParEuler (template for a flow solver)
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Square Root

many identical threads are used for simple arithmetic

time in s parallel speedup
1 12:41 1
2 6:34 1,93
3 4:20 2,92
4 3:17 3,86
8 1:39 7,69
9 1:28 8,65

16 0:50 15,22
32 0:26 29,27

number of 
threads

Computing times and parallel speedups for square root program on HP 
V-Class
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Square Root

Computing times and parallel speedups for square root program on HP 
V-Class
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Square Root

The program GlancePlus is used on the HP V-Class to illustrate the 
parallel runtime behavior for the square root example.

history of the 
averaged machine 
load

CPU utilization
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Matrix Multiply

Parallel matrix multiplication is implemented by block matrices, as 
shown in the Figure Matrices A and B are multiplied to produce C

The multi-threaded matrix multiplication is performed by splitting matrix C into partitions. 
Each partition is then calculated by one thread, with the thread numbering as shown for 
matrix C. Concurrent access to the memory containing A and B is necessary: here we see 
the memory that thread 2 accesses.

A B C

T2T1 T3

T4 T5 T6 T7

T8 T9 T10 T11

T12 T13 T14 T15

T0
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Matrix Multiply

for comparison, we have a Java and a C-coded version of 
the sequential block-matrix multiply that does not use 
threads

to compare floating point performance for scientific 
applications between C and Java on the test machines

to measure parallel efficiency of a multithreaded application
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Sequential Matrix Multiplication

 MFlops per second for dirfferent matrix sizes

30x30 100x100 300x300
HP Vclass, C-code 242,00 237,00 114,00
HP Vclass, Java 1.1.7 9,33 9,57 9,54
Sun E450, C-code 176,86 157,73 35,24
Sun E450, Java 1.1.7 6,35 6,72 5,87
Sun E450, Java 1.2 17,08 12,65 8,90
Pentium, C-Code 90,00 91,74 39,82
Pentium, Java IBM 1.1.6 24,80 22,79 11,21

Hardware and Software 
specifications

The performance, in megaflops, of the sequential matrix-multiply program on the 
one processor of the HP-Vclass, one processor of the Sun E450, and a Pentium II 
PC running Linux.
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Multi-threaded Matrix Multiplication

 HP using 16 CPUs  HP using 1 CPU  Sun using 4 CPUs

30x30 300x300 30x30 300x300 30x30 300x300
1 7,01 8,64 6,51 8,66 13,40 9,06
4 11,38 33,49 3,86 8,68 19,21 23,56
9 6,33 72,53 2,40 8,73 12,25 22,00

16 118,68 8,69 28,13
25 2,62 112,97 1,04 8,65 5,14 27,84
36 1,83 110,66 0,75 8,64 3,75 30,07

100 0,64 109,53 0,29 8,44 1,57 33,93

number of 
threads

Megaflop rates for the pure Java multithreaded matrix-multiply benchmark. 

On the HP architecture a maximal speedup of 13,74 using 16 
processors for the 300x300 matrix example was measured.
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Mandelbrot
This code tests the self-scheduling of threads

Computation of the Mandelbrot set performed on a 2D 
grid in the complex plane
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Mandelbrot

Almost 100% parallel efficiency was achieved on the 4 
processor Sun E450.

picture dimensions 3000 x 2000 pixels

256 Threads

5000 Iterations

Problems with thread scheduling occurred on the HP.  



page 19©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Laplace Solver

In this test program we are using a global thread 
synchronization instead of a loose thread synchronization.

time in s
1 893 1,00
2 639 1,40
3 562 1,59
4 578 1,54

number of 
processors  parallel speedup

Computing times and speedups on Sun E450 using 192 threads 
(16x12 blocks with 9600 cells) running 5000 iterations. We 
achieve in this test case 50% CPU load only.
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Laplace Solver

with loose thread synchronization (a thread is blocked 
until it's neighboring threads become ready)

time in s
1 842 1,00
2 430 1,96
3 295 2,85
4 226 3,72

number of 
processors  parallel speedup

Computing times and speedups on Sun E450 using 192 threads 
(16x12 blocks with 9600 cells per block) running 5000 iterations.



page 21©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

JParFw - Java Parallel Framework

A complete pure Java parallel framework for solving 
problems in science and engineering.

It is based on the client-server concept (Java RMI)

Allows to perform a parallel computation using the internet

The JParFw comprises three parts:

client (uses the server interface and implements the 
numerics) 

server (server implementation)

share (server interface)
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JParEuler
Is an Euler solver plugin for the JParFw

Testcase is a Mach 3 Euler flow past a forward 
facing-step

The simulations are based on structured multi-block grids

The computation is explicit and first order accurate. Shown 
is the Mach-number distribution.
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JParEuler

  time in seconds

single processor multi processor (16)
16 121104 3246,73 541,13 6,00
16 200704 6908,88 1077,20 6,41
16 484416 12905,88 2720,48 4,74
48 118803 2980,93 225,76 13,20
48 202800 5190,54 436,09 11,90
48 480000 12663,30 1162,54 10,89

number of 
blocks

number of 
cells

parallel 
speedup

HP V-Class times for 320 iterations
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JParEuler

  time in seconds

single processor multi processor (4)
16 121104 852,79 258,26 3,30
16 200704 1571,76 532,74 2,95
16 484416 4277,96 1593,45 2,68
48 118803 756,24 195,95 3,86
48 202800 1409,96 378,61 3,72
48 480000 3892,67 1077,06 3,61

number of 
blocks

number of 
cells

parallel 
speedup

Sun E450 times for 320 iterations
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Comparing Solaris 2.6 and Solaris 7

JparEuler is used to demonstrate the influence of the 
operating system on the parallel performance while using 
the same JDK release (build Solaris_JDK_1.2.1_03, 
native threads, sunwjit)

Operating System

48 42000 Solaris 2.6 282,04
48 42000 Solaris 7 258,16

number of 
blocks

number of 
cells

time in s 
multiprocessor (4)

JParEuler on Sun E450, 1000 iterations
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Comparing Solaris 2.6 and Solaris 7

Snapshot of CPU utilization during the first minute of the 
JParEuler computation on the Sun E450 using Solaris 2.6. The 
system requires about 20% of the CPU resources for internal 
Thread (LWP) handling.
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Comparing Solaris 2.6 and Solaris 7

Snapshot of CPU Ultilization after the OS Thread handling is 
optimized. (JParEuler computation on Sun E450 using Solaris 
2.6.)



page 28©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Conclusions

The parallel efficiency is obtained if a sufficient number of 
threads and sufficient computational work within a thread 
can be provided.

With the scientific and engineering problems that we have 
in mind, these requirements are easily satisfied.

Today, the speed of the Java code generated by the 
compilers of the main hardware vendors is unsatisfactory.

Substantial speedups can be expected within the next 18 
month.

The IBM alphaWorks compiler delivered good results.
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Conclusions

The new Solaris release has shown that the OS itself can 
decrease computing time by more efficient thread 
handling.

We are therefore not concerned by the speed issue, 
leaving this problem to the compiler builders.

Further work will be needed, but we following Kernighan's 
rules Make it right before you make it faster as well Don't 
patch bad code, rewrite it, the latter rule being the reason 
for a pure Java flow solver code.
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