
page 1©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

A Test Suite for High-Performance
Parallel Java

Jochem Häuser, Thorsten Ludewig, Roy D. Williams, Ralf Winkelmann,

Torsten Gollnick, Sharon Brunett, Jean Muylaert

presented at

5th National Symposium
 on Large-Scale Analysis, Design and Intelligent Synthesis Environments

Williamsburg, VA, October 12th to 15th, 1999

page 2©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Introduction and Motivation

Why we like to use Java for writing high-quality portable
parallel programs?

pure object formulation (i.e. an object representation of a
wing, fuselage, engine etc. described by a set of classes
containing the data structures and methods for a specific
item)

strong typing

exception model

elegant threading

portability

page 3©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

What is a Thread?

Virtual CPU

Three parts of a Thread:

CPU

Code

Data

CPU

Code Data

A thread or
execution context

page 4©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Why Threads are good for CFD

Threads as a general parallelization strategy for CFD
codes

Advanced numerical schemes in CFD, i.e. GMRES, do
not require the same computational work for each grid
cell.

Sophisticated dynamic load balancing algorithms on
distributed-memory machines

page 5©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Java Numerical Performance

"write-once-run-anywhere"

porting Java is certainly easier than porting C, C++, or
Fortran codes

portability is obtained because Java is generally not
compiled to a platform-specific executable, but converted
to so-called byte-code

have a serious performance impact

Hewlett-Packard, IBM, Sun and Tower Technology, offer
(or will offer) Java compilers, that create native code
directly

Thus a user has the choice of portability or performance

page 6©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Java Numerical Performance

garbage-collector thread is always running

makes Java slower than C

provides an enormous boost to the programmer's
productivity

Multithreading

a direct parallelization strategy

in C it is more difficult to manage threads

Runtime checking

null reference, array bounds, ...

makes Java programs much more robust

page 7©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

JParNSS

We are in the process of developing a parallel
Navier-Stokes flow solver JParNSS, using the principles
learned from this test suite.

Thus, the test suite presented here concentrates on two
performance aspects:

single-node performance of Java

speedup (ratio of single-node speed to multiple-node
speed)

page 8©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

The Test Machines

HP V-class

32 PA-8200 processors running at 240 MHz, with 16 GByte
RAM. Each processors has 2 MByte instruction as well as
data cache

Sun Enterprise E450

SMP architecture, powered by four 300 MHz UltraSPARC II
processors which are connected by a 1.6-GB/s UPA
interconnect to 1.7 GB of shared memory

no name PC

a Pentium II with 300MHz running Linux

page 9©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

The Test Suite

Square Root (parallel efficiency, thread scheduling)

Matrix Multiply (comparison of Java and C code)

Mandelbrot (thread scheduling and dynamic load
balancing)

Laplace (domain decomposition and synchronization
strategies)

JParFw - Java Parallel Framework (client-server concept)

JParEuler (template for a flow solver)

page 10©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Square Root

many identical threads are used for simple arithmetic

time in s parallel speedup
1 12:41 1
2 6:34 1,93
3 4:20 2,92
4 3:17 3,86
8 1:39 7,69
9 1:28 8,65

16 0:50 15,22
32 0:26 29,27

number of
threads

Computing times and parallel speedups for square root program on HP
V-Class

page 11©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Square Root

Computing times and parallel speedups for square root program on HP
V-Class

page 12©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Square Root

The program GlancePlus is used on the HP V-Class to illustrate the
parallel runtime behavior for the square root example.

history of the
averaged machine
load

CPU utilization

page 13©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Matrix Multiply

Parallel matrix multiplication is implemented by block matrices, as
shown in the Figure Matrices A and B are multiplied to produce C

The multi-threaded matrix multiplication is performed by splitting matrix C into partitions.
Each partition is then calculated by one thread, with the thread numbering as shown for
matrix C. Concurrent access to the memory containing A and B is necessary: here we see
the memory that thread 2 accesses.

A B C

T2T1 T3

T4 T5 T6 T7

T8 T9 T10 T11

T12 T13 T14 T15

T0

page 14©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Matrix Multiply

for comparison, we have a Java and a C-coded version of
the sequential block-matrix multiply that does not use
threads

to compare floating point performance for scientific
applications between C and Java on the test machines

to measure parallel efficiency of a multithreaded application

page 15©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Sequential Matrix Multiplication

 MFlops per second for dirfferent matrix sizes

30x30 100x100 300x300
HP Vclass, C-code 242,00 237,00 114,00
HP Vclass, Java 1.1.7 9,33 9,57 9,54
Sun E450, C-code 176,86 157,73 35,24
Sun E450, Java 1.1.7 6,35 6,72 5,87
Sun E450, Java 1.2 17,08 12,65 8,90
Pentium, C-Code 90,00 91,74 39,82
Pentium, Java IBM 1.1.6 24,80 22,79 11,21

Hardware and Software
specifications

The performance, in megaflops, of the sequential matrix-multiply program on the
one processor of the HP-Vclass, one processor of the Sun E450, and a Pentium II
PC running Linux.

page 16©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Multi-threaded Matrix Multiplication

 HP using 16 CPUs HP using 1 CPU Sun using 4 CPUs

30x30 300x300 30x30 300x300 30x30 300x300
1 7,01 8,64 6,51 8,66 13,40 9,06
4 11,38 33,49 3,86 8,68 19,21 23,56
9 6,33 72,53 2,40 8,73 12,25 22,00

16 118,68 8,69 28,13
25 2,62 112,97 1,04 8,65 5,14 27,84
36 1,83 110,66 0,75 8,64 3,75 30,07

100 0,64 109,53 0,29 8,44 1,57 33,93

number of
threads

Megaflop rates for the pure Java multithreaded matrix-multiply benchmark.

On the HP architecture a maximal speedup of 13,74 using 16
processors for the 300x300 matrix example was measured.

page 17©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Mandelbrot
This code tests the self-scheduling of threads

Computation of the Mandelbrot set performed on a 2D
grid in the complex plane

page 18©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Mandelbrot

Almost 100% parallel efficiency was achieved on the 4
processor Sun E450.

picture dimensions 3000 x 2000 pixels

256 Threads

5000 Iterations

Problems with thread scheduling occurred on the HP.

page 19©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Laplace Solver

In this test program we are using a global thread
synchronization instead of a loose thread synchronization.

time in s
1 893 1,00
2 639 1,40
3 562 1,59
4 578 1,54

number of
processors parallel speedup

Computing times and speedups on Sun E450 using 192 threads
(16x12 blocks with 9600 cells) running 5000 iterations. We
achieve in this test case 50% CPU load only.

page 20©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Laplace Solver

with loose thread synchronization (a thread is blocked
until it's neighboring threads become ready)

time in s
1 842 1,00
2 430 1,96
3 295 2,85
4 226 3,72

number of
processors parallel speedup

Computing times and speedups on Sun E450 using 192 threads
(16x12 blocks with 9600 cells per block) running 5000 iterations.

page 21©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

JParFw - Java Parallel Framework

A complete pure Java parallel framework for solving
problems in science and engineering.

It is based on the client-server concept (Java RMI)

Allows to perform a parallel computation using the internet

The JParFw comprises three parts:

client (uses the server interface and implements the
numerics)

server (server implementation)

share (server interface)

page 22©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

JParEuler
Is an Euler solver plugin for the JParFw

Testcase is a Mach 3 Euler flow past a forward
facing-step

The simulations are based on structured multi-block grids

The computation is explicit and first order accurate. Shown
is the Mach-number distribution.

page 23©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

JParEuler

 time in seconds

single processor multi processor (16)
16 121104 3246,73 541,13 6,00
16 200704 6908,88 1077,20 6,41
16 484416 12905,88 2720,48 4,74
48 118803 2980,93 225,76 13,20
48 202800 5190,54 436,09 11,90
48 480000 12663,30 1162,54 10,89

number of
blocks

number of
cells

parallel
speedup

HP V-Class times for 320 iterations

page 24©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

JParEuler

 time in seconds

single processor multi processor (4)
16 121104 852,79 258,26 3,30
16 200704 1571,76 532,74 2,95
16 484416 4277,96 1593,45 2,68
48 118803 756,24 195,95 3,86
48 202800 1409,96 378,61 3,72
48 480000 3892,67 1077,06 3,61

number of
blocks

number of
cells

parallel
speedup

Sun E450 times for 320 iterations

page 25©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Comparing Solaris 2.6 and Solaris 7

JparEuler is used to demonstrate the influence of the
operating system on the parallel performance while using
the same JDK release (build Solaris_JDK_1.2.1_03,
native threads, sunwjit)

Operating System

48 42000 Solaris 2.6 282,04
48 42000 Solaris 7 258,16

number of
blocks

number of
cells

time in s
multiprocessor (4)

JParEuler on Sun E450, 1000 iterations

page 26©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Comparing Solaris 2.6 and Solaris 7

Snapshot of CPU utilization during the first minute of the
JParEuler computation on the Sun E450 using Solaris 2.6. The
system requires about 20% of the CPU resources for internal
Thread (LWP) handling.

page 27©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Comparing Solaris 2.6 and Solaris 7

Snapshot of CPU Ultilization after the OS Thread handling is
optimized. (JParEuler computation on Sun E450 using Solaris
2.6.)

page 28©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Conclusions

The parallel efficiency is obtained if a sufficient number of
threads and sufficient computational work within a thread
can be provided.

With the scientific and engineering problems that we have
in mind, these requirements are easily satisfied.

Today, the speed of the Java code generated by the
compilers of the main hardware vendors is unsatisfactory.

Substantial speedups can be expected within the next 18
month.

The IBM alphaWorks compiler delivered good results.

page 29©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Conclusions

The new Solaris release has shown that the OS itself can
decrease computing time by more efficient thread
handling.

We are therefore not concerned by the speed issue,
leaving this problem to the compiler builders.

Further work will be needed, but we following Kernighan's
rules Make it right before you make it faster as well Don't
patch bad code, rewrite it, the latter rule being the reason
for a pure Java flow solver code.

page 30©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

Acknowledgements

The Test Suite for High-Performance Parallel Java is part
of the JavaPar project which was partly funded by the
ministry of Sciences and Culture of the State of Lower
Saxony, Germany and the European Commision under
the contract JavaPar 1998.262.

We would like to thank the Center for Advanced
Computing Research at Caltech for hosting Ralf
Winkelmann while this work was completed.

This work contains parts of the Ph.D. work of Thorsten
Ludewig

page 31©1999 University of Applied Sciences Wolfenbuettel and CLE, Department of High Performance Computing

References

Eiseman, Peter R., GridPro v3.1, The CFD Link to Design, Topology Input Language Manual, Program
Development Corporation Inc., 300 Hamilton Ave., Suite 409, White Plains, NY 10601, 1998.

Fox, G.C. (ed.), Java for Computational Science and Engineering- Simulation and Modeling I,
Concurrency Practice and Experience, Vol. 9(11), June 1997,Wiley.

Fox, G.C. (ed.), Java for Computational Science and Engineering- Simulation and Modeling II,
Concurrency Practice and Experience, Vol. 9(11), November 1997,Wiley.

James Gosling, Henry McGilton, The Java Language Environment - A White Paper, Sun Microsystems
October 1995, http://www.javasoft.com/docs/.

Häuser J., Williams R.D, Spel M., Muylaert J., ParNSS: An Efficient Parallel Navier-Stokes Solver for
Complex Geometries, AIAA 94-2263, AIAA 25th Fluid Dynamics Conference, Colorado Springs, June
1994.

Häuser, J., Xia, Y., Muylaert, J., Spel, M., Structured Surface Definition and Grid Generation for Complex
Aerospace Configurations, In: Proceedings of the 13th AIAA Computational Fluid Dynamics Conference
Open Forum, June 29 - July 2, 1997, Part 2, pp. 836-837, ISBN 1-56347-233-3.

Häuser J., Williams R.D., Strategies for Parallelizing a Navier-Stokes Code on the Intel Touchstone
Machines, Int. Journal for Numerical Methods in Fluids 15,51-58. , John Wiley & Sons, June 1992.

Häuser, J., Ludewig, Th., Gollnick, T., Winkelmann, R., Williams, R., D., Muylaert, J., Spel, M., A Pure
Java Parallel Flow Solver, 37th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 99-0549 Reno, NV,
USA, 11-14 January 1999.

Winkelmann, R., Häuser J., Williams R.D, Strategies for Parallel and Numerical Scalability of Large CFD
Codes, Comput. Methods Appl. Mech. Engrg. 174 (1999) 433-456, 1999.

