
©1999 University of Applied Sciences, Braunschweig/Wolfenbuettel and CLE, Department of High Performance Computing

NASA Panel Java Soundbytes

Jochem Häuser, Thorsten Ludewig, Roy D. Williams, Ralf Winkelmann,

Torsten Gollnick, Sharon Brunett, Jean Muylaert

presented at

5th National Symposium
 on Large-Scale Analysis, Design and Intelligent Synthesis Environments

Williamsburg, VA, October 12th to 15th, 1999

©1999 University of Applied Sciences, Braunschweig/Wolfenbuettel and CLE, Department of High Performance Computing

Java in Science and Engineering

©1999 University of Applied Sciences, Braunschweig/Wolfenbuettel and CLE, Department of High Performance Computing

Java for Scientific and Engineering
Applications

Object oriented formulation

Threads for parallel computing (no additional software
libraries, like MPI or PVM, are needed)

Distributed computing on networks supported within the
language (remote objects, implemented by RMI)

Database access through JDBC

Graphics packages for GUIs and visualization of scientific
data (Swing and Java3D)

Robustness, portability, maintainability, reusability,
productivity, distributed project management, exception
handling

©1999 University of Applied Sciences, Braunschweig/Wolfenbuettel and CLE, Department of High Performance Computing

JParFw (Java Parallel Framework)

JparFw is pure Java template code for concurrent scientific
and engineering computation on arbitrary solution
domains.

The code consists of 3 parts:

client (User interface, geometry data, solver module)

share (interface between client and server through remote
objects, RMI)

server (parallel framework, geometry framework, generic
solver)

©1999 University of Applied Sciences, Braunschweig/Wolfenbuettel and CLE, Department of High Performance Computing

JParFw (Java Parallel Framework)
Parallelism is achieved by decomposing the solution domain

into subdomains and solving the particular equations, i.e.
Navier-Stokes Eqs. within each subdomain.

Each subdomain is implemented by a thread.

Communication between subdomains (threads) is via
shared memory.

Load imbalance created by advanced numerical schemes,
for instance, GMRES, is optimized by the automatic
thread scheduling of the OS and not by the user.

©1999 University of Applied Sciences, Braunschweig/Wolfenbuettel and CLE, Department of High Performance Computing

Parallel Square Root Program

multiple threads are used to implement parallel structure

time in s parallel speedup
1 12:41 1
2 6:34 1,93
3 4:20 2,92
4 3:17 3,86
8 1:39 7,69
9 1:28 8,65

16 0:50 15,22
32 0:26 29,27

number of
threads

Parallel speedup on HP V-Class machine, Caltech

©1999 University of Applied Sciences, Braunschweig/Wolfenbuettel and CLE, Department of High Performance Computing

Matrix Multiply

Parallel matrix multiplication is implemented by block matrices, as shown
in the figure matrices A and B are multiplied to compute matrix C

The multi-threaded matrix multiplication is performed by splitting matrix C into partitions.
Each partition is then calculated by one thread, with the thread numbering as shown for
matrix C. Concurrent access to the memory containing A and B is necessary: here we see
the memory that thread 2 accesses.

A B C

T2T1 T3

T4 T5 T6 T7

T8 T9 T10 T11

T12 T13 T14 T15

T0

©1999 University of Applied Sciences, Braunschweig/Wolfenbuettel and CLE, Department of High Performance Computing

Sequential Matrix Multiplication

 MFlops per second for dirfferent matrix size

30x30 100x100 300x300
HP Vclass, C-code 242,00 237,00 114,00
HP Vclass, Java 1.1.7 9,33 9,57 9,54
Sun E450, C-code 176,86 157,73 35,24
Sun E450, Java 1.1.7 6,35 6,72 5,87
Sun E450, Java 1.2 17,08 12,65 8,90
Pentium, C-Code 90,00 91,74 39,82

24,80 22,79 11,21

Hardware and Software
specifications

Pentium, Java IBM 1.1.6

The performance, in megaflops, of the sequential matrix-multiply program on the
one processor of the HP-Vclass, one processor of the Sun E450, and a Pentium II
PC running Linux.

©1999 University of Applied Sciences, Braunschweig/Wolfenbuettel and CLE, Department of High Performance Computing

Multi-threaded Matrix Multiplication

 HP using 16 CPUs HP using 1 CPU Sun using 4 CPUs

30x30 300x300 30x30 300x300 30x30 300x300
1 7,01 8,64 6,51 8,66 13,40 9,06
4 11,38 33,49 3,86 8,68 19,21 23,56
9 6,33 72,53 2,40 8,73 12,25 22,00

16 118,68 8,69 28,13
25 2,62 112,97 1,04 8,65 5,14 27,84
36 1,83 110,66 0,75 8,64 3,75 30,07

100 0,64 109,53 0,29 8,44 1,57 33,93

number of
threads

Megaflop rates for the pure Java multithreaded matrix-multiply benchmark.

On the HP architecture a maximal speedup of 13.74 using 16
processors for the 300x300 matrix example was measured.

©1999 University of Applied Sciences, Braunschweig/Wolfenbuettel and CLE, Department of High Performance Computing

JParEuler
Euler solver plugin for the JParFw

Test case is a Mach 3 Euler flow past a forward facing-step

The simulations are based on structured multi-block grids

The computation is explicit and first order accurate. Shown
is the Mach-number distribution.

©1999 University of Applied Sciences, Braunschweig/Wolfenbuettel and CLE, Department of High Performance Computing

JParEuler

 time in seconds

single processor multi processor (16)
16 121104 3246,73 541,13 6,00
16 200704 6908,88 1077,20 6,41
16 484416 12905,88 2720,48 4,74
48 118803 2980,93 225,76 13,20
48 202800 5190,54 436,09 11,90
48 480000 12663,30 1162,54 10,89

number of
blocks

number of
cells

parallel
speedup

HP V-Class execution times for 320 iterations
(forward facing step)

©1999 University of Applied Sciences, Braunschweig/Wolfenbuettel and CLE, Department of High Performance Computing

Conclusions
Thread concept delivers full parallel efficiency for a

sufficient number of threads and sufficient computational
work within a thread can be provided.

Scientific and engineering problems generally satisfy these
requirements.

Substantial performance improvements in the execution
speed of java programs can be expected with the release
of new compiler versions.

Therefore, research should concentrate on demonstrating
parallel and numerical scalability as well as producing a
generic parallel Java solver.

©1999 University of Applied Sciences, Braunschweig/Wolfenbuettel and CLE, Department of High Performance Computing

Conclusions

Distributed computing and distributed project management
for a large number of numerical problems in science and
engineering can be successfully addressed by the
combination of OOP, Thread and Client-Server approach.

Further work will be needed, but we follow Kernighan's rules
Make it right before you make it faster as well Don't patch
bad code, rewrite it, the latter rule being the reason for a
pure Java flow solver.

©1999 University of Applied Sciences, Braunschweig/Wolfenbuettel and CLE, Department of High Performance Computing

Acknowledgments

The Test Suite for High-Performance Parallel Java is part of
the JavaPar project which is partly funded by the ministry
of Sciences and Culture of the State of Lower Saxony,
Germany and the European Commission under contract
JavaPar 1997.262.

©1999 University of Applied Sciences, Braunschweig/Wolfenbuettel and CLE, Department of High Performance Computing

References

Eiseman, Peter R., GridPro v4.1, The CFD Link to Design, Topology Input Language Manual, Program
Development Corporation Inc., 300 Hamilton Ave., Suite 409, White Plains, NY 10601, 1999.

Fox, G.C. (ed.), Java for Computational Science and Engineering- Simulation and Modeling I, Concurrency
Practice and Experience, Vol. 9(11), June 1997,Wiley.

Fox, G.C. (ed.), Java for Computational Science and Engineering- Simulation and Modeling II, Concurrency
Practice and Experience, Vol. 9(11), November 1997,Wiley.

James Gosling, Henry McGilton, The Java Language Environment - A White Paper, Sun Microsystems
October 1995, http://www.javasoft.com/docs/.

Häuser J., Williams R.D, Spel M., Muylaert J., ParNSS: An Efficient Parallel Navier-Stokes Solver for Complex
Geometries, AIAA 94-2263, AIAA 25th Fluid Dynamics Conference, Colorado Springs, June 1994.

Häuser, J., Xia, Y., Muylaert, J., Spel, M., Structured Surface Definition and Grid Generation for Complex
Aerospace Configurations, In: Proceedings of the 13th AIAA Computational Fluid Dynamics Conference
Open Forum, June 29 - July 2, 1997, Part 2, pp. 836-837, ISBN 1-56347-233-3.

Häuser J., Williams R.D., Strategies for Parallelizing a Navier-Stokes Code on the Intel Touchstone
Machines, Int. Journal for Numerical Methods in Fluids 15,51-58. , John Wiley & Sons, June 1992.

Häuser, J., Ludewig, Th., Gollnick, T., Winkelmann, R., Williams, R., D., Muylaert, J., Spel, M., A Pure Java
Parallel Flow Solver, 37th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 99-0549 Reno, NV,
USA, 11-14 January 1999.

Winkelmann, R., Häuser J., Williams R.D, Strategies for Parallel and Numerical Scalability of Large CFD
Codes, Comput. Methods Appl. Mech. Engrg. 174 (1999) 433-456, 1999.

our preferred textbook for Java: CoreJava by C. Horstmann et al., Sunsoft Press, Prentice Hall,1999.

