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Java in Science and Engineering
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Java for Scientific and Engineering 
Applications

Object oriented formulation 

Threads for parallel computing (no additional software 
libraries, like MPI or PVM,  are needed) 

Distributed computing on networks supported within the 
language (remote objects, implemented by RMI)

Database access through JDBC

Graphics packages for GUIs and visualization of scientific 
data (Swing and Java3D)

Robustness, portability, maintainability, reusability, 
productivity, distributed project management, exception 
handling
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JParFw (Java Parallel Framework)

JparFw  is pure Java template code for concurrent  scientific 
and engineering computation  on arbitrary  solution 
domains.

The code consists of 3 parts:

client (User interface, geometry data, solver module)

share (interface between client and server through remote 
objects, RMI)

server (parallel framework, geometry framework, generic 
solver)
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JParFw (Java Parallel Framework)
Parallelism is achieved by decomposing the solution domain 

into subdomains and solving the particular equations, i.e. 
Navier-Stokes Eqs. within each subdomain.

Each subdomain is implemented by a thread.

Communication between subdomains (threads) is  via 
shared memory.

Load imbalance created by advanced numerical schemes, 
for instance, GMRES, is optimized by the automatic 
thread scheduling of the OS and not by the user.
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Parallel Square Root Program

multiple threads are used to implement  parallel structure

time in s parallel speedup
1 12:41 1
2 6:34 1,93
3 4:20 2,92
4 3:17 3,86
8 1:39 7,69
9 1:28 8,65

16 0:50 15,22
32 0:26 29,27

number of 
threads

Parallel speedup on HP V-Class machine, Caltech
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Matrix Multiply

Parallel matrix multiplication is implemented by block matrices, as shown 
in the figure matrices A and B are multiplied to compute matrix  C

The multi-threaded matrix multiplication is performed by splitting matrix C into partitions. 
Each partition is then calculated by one thread, with the thread numbering as shown for 
matrix C. Concurrent access to the memory containing A and B is necessary: here we see 
the memory that thread 2 accesses.

A B C

T2T1 T3

T4 T5 T6 T7

T8 T9 T10 T11

T12 T13 T14 T15

T0
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Sequential Matrix Multiplication

 MFlops per second for dirfferent matrix size

30x30 100x100 300x300
HP Vclass, C-code 242,00 237,00 114,00
HP Vclass, Java 1.1.7 9,33 9,57 9,54
Sun E450, C-code 176,86 157,73 35,24
Sun E450, Java 1.1.7 6,35 6,72 5,87
Sun E450, Java 1.2 17,08 12,65 8,90
Pentium, C-Code 90,00 91,74 39,82

24,80 22,79 11,21

Hardware and Software 
specifications

Pentium, Java IBM 1.1.6

The performance, in megaflops, of the sequential matrix-multiply program on the 
one processor of the HP-Vclass, one processor of the Sun E450, and a Pentium II 
PC running Linux.
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Multi-threaded Matrix Multiplication

 HP using 16 CPUs  HP using 1 CPU  Sun using 4 CPUs

30x30 300x300 30x30 300x300 30x30 300x300
1 7,01 8,64 6,51 8,66 13,40 9,06
4 11,38 33,49 3,86 8,68 19,21 23,56
9 6,33 72,53 2,40 8,73 12,25 22,00

16 118,68 8,69 28,13
25 2,62 112,97 1,04 8,65 5,14 27,84
36 1,83 110,66 0,75 8,64 3,75 30,07

100 0,64 109,53 0,29 8,44 1,57 33,93

number of 
threads

Megaflop rates for the pure Java multithreaded matrix-multiply benchmark. 

On the HP architecture a maximal speedup of 13.74 using 16 
processors for the 300x300 matrix example was measured.
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JParEuler
Euler solver plugin for the JParFw

Test case is a Mach 3 Euler flow past a forward facing-step

The simulations are based on structured multi-block grids

The computation is explicit and first order accurate. Shown 
is the Mach-number distribution.
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JParEuler

  time in seconds

single processor multi processor (16)
16 121104 3246,73 541,13 6,00
16 200704 6908,88 1077,20 6,41
16 484416 12905,88 2720,48 4,74
48 118803 2980,93 225,76 13,20
48 202800 5190,54 436,09 11,90
48 480000 12663,30 1162,54 10,89

number of 
blocks

number of 
cells

parallel 
speedup

HP V-Class execution times for 320 iterations 
(forward facing step)
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Conclusions
Thread concept delivers full parallel efficiency  for a 

sufficient number of threads and sufficient computational 
work within a thread can be provided.

Scientific and engineering problems generally satisfy these 
requirements.

Substantial performance improvements in the execution 
speed of java programs can be expected with the release 
of new compiler versions.

Therefore, research should concentrate on demonstrating 
parallel and numerical scalability as well as producing a 
generic parallel Java solver.  
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Conclusions

Distributed computing and distributed project management 
for a large number of numerical problems in science and 
engineering can be successfully addressed by the 
combination of OOP,  Thread and Client-Server approach. 
 

Further work will be needed, but we follow Kernighan's rules 
Make it right before you make it faster as well Don't patch 
bad code, rewrite it, the latter rule being the reason for a 
pure Java flow solver.
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