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INTRODUCTION

A numerical method is presented for the solution of the
shallow-water wave equations on time dependent domains. Partic-
ular interest is given to the modeling of transient irregularly
shaped boundaries. This problem occurs, e.g. in the numerical
simulation of storm surges and in the calculation of flow fields
in tidal rivers and estuaries.

The method discussed is a special case of the adaptive
(or moving) grid technique [5]. However, the movement of grid
points is permitted only at the boundary, while interior grid
points remain fixed. Hence, it is possible to combine the mov-
ing boundary technique with other Finite Difference/Finite
Element Methods on a fixed, regular grid.

The moving boundary is part of the solution. The customary
procedures either solve an implicit equation for the boundary
points or make assumptions of an explicit dependence of the
boundary points on, for example, the flow field (e.g. [6]).
the method employed in this paper the equations of the boundary
points are derived directly from the shallow—water equations.

This method is advantageous 1in cases of internal discon-
tinuities, i.e. steep gradients, interfaces, shocks, rare fac-
tion waves etc.. In practice it is difficult to numerically
calculate the positions of these discontinuities since their
propagation velocity is not known a priori. Therefore, internal
boundary conditions are added to the differential equation [1].
It should be mentioned that the use of an overall adaptlve grid
will enhance greatly the accuracy if e.g., bores appear in the
solution. One has to keep in mind, however, that the shallow-
water equation is not applicable to wave-breaking problems, so
only approximate results can be expected.

*On leave from NOAA, 15 Rickenbacker CSWY, Miami FL 33149, UV.S.A.
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1. THL B.SIC LOUATIONS

From the Euler—equations and the continuity eguation. where
an i1ncompressible {luid ie assumed, the following formulas are
obtained by integration over the depth according to shallow-
water wave theory.

. , t
" C

¢ c ¢ (I.l)
oh oDu oh
—_— 4 — = P —_— =
ot 8% ot 1‘h(u’h) 0

where u is the averape velocity, h denotes free surface eleva-
tion with respect to the still water level and D is the total
water depth (D =h+H).

z' free water surfoce
ait} ‘h bl
; ﬂ//,f/ﬂﬁ__-h\T\\\dfi_ x still voler level
D
H

botiom

h = surfoce elevotion D - voter depth
H = still voter depth
fFig.1l: Coordinate system

Introducing typical quantities such as a time scale T,
an average depth H and a length L = Vgl T, the following dimen-
sionless variables can be defined:

x-lri, D-*E, h—>p—, t-r-F—, u->u-'£.
L i e T L

To enhance computational stability of the continuity equation,
which describes surface elevation h, a numerical viscosity term
uh, can be added [4].

2, THE VARIATIONAL PRINCIPLE FOR A MOVING COORDINATE SYSTEM

A moving coordinate system is described by a strictly mono--
tone, continuous grid function x = x(£,t) on the fixed para-
meter space P = [0, N+1] x RY = R (in practice P is mapped onto
£(t), see below) where the Brid points are simply the function
values xj: = x(i,t), i = 0,..., N+1, and £ denotes positions in
the parameter space P. Now the solution functions

u = u(x(g,t),t), h = hr(x(f,t),t), which are in clla(t) x R*],
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wnere &(t) = [a(t), b(t)] is the time dgpéndent phvsical domain
(see Fig. 1), can be transformed to the fixed parameter spaceP
by means of the grid function x = x(¢,t).

With the choice of the transformed trial functions u,bh
out of the space X; x C!(R*), the grid function x ¢ X, x C!(RY)
where XiC'CO[cu N+1],1i = 1,2, finite dimensional spaces, 1i.e.
u,h are piecewise polynomials, the differential eguation is not
exactly satisfied. As grid generation principle one chooses
the minimur of the error which is defined as follows:

a2

a | == lu(u,h)[lz+ (1-a)

Byl ) 1 - minimm. (2.1)
gt et RO,

Here a¢ [0,1] is a weight factor, Lu,Ll; contain the spatial
derivatives in the systenm (1.1), |: liz is the norm in the
Hilbert space L,(G(t)). Minimization is performed with respect
to the time derivatives 0,h,% of the unknown functions in the
parameter space such that the boundary conditions are satisfied.
This principle is consistent with the hyperbolic character of
equations (1.1). The temporal behavior of the numerical solu-
tions of u,h and x is calculated in an optimal fashion (see

Eq. (2.1) depending on the specified initial values at time
instant t,.

For the calculation of the total derivatijve with respect
to t, we find

. . du(x,t) _ 3u du 0x
v at 3t | 3x ot
3o = b-ug, &g h_

where x = x(£,t) was used.

The variational equations for the minimization problem
follow from Eq. (2.1) by differentiation with respect te u,h
and % resulting in

I(ﬁ-uxi+Lu(u.h))¢; dx=0, for i = I to dim X, (2.2)
Q(t)

JB-b i+L, (uh))4)1dx=0, for i = 1 to dim X, (2.3)
2(t)
o [G-u kel (u,h) (v ed)axe (2.4)
Q)

(I-x) f(‘r'x-h i+Lh(u,h)) (-h ¢-%)dx=0, for i = | to dim X,
) X x

i i .. . .
where ¢} and ¢, form finite sets of basis functions for the
spaces X) and X,, respectively.

f ; ‘ =T A
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B 5t Uy (0 =)
ux(x,t) = .E ui(t)igﬁi(x) X0 S D forxs:[xi,xi+]]
1=0 1+] 3

The expressions for D, D and % are obtained 1n the same manner.
These derivatives are ingerted into the variationzl equations
(2.2-2.4). The integration over G{t) 1s recdused to the inter-
vall [xi—l’xi+1] since the basis functions CE vanish outside.

(o,

i
With the solution vector z: = |D. a system of nonlinear,
1

Px, |1=0, ..., N4]

(i
weakly coupled differential equations in time is obtained,
which is solved by either an explicit fourth order Runge-Kutta
scheme or by Gear's implicit method. The left-hand side of
Eqg. (3.1) results from combining the time derivatives of
Egs. (2.2-2.4) whereas the spatial derivatives give rise to
the vector L, described below. The differential equations are
formally written as

A(z)z = L(z) (3.1)
i A B \
J C]\\ o
\
where A(z) = : C., A. B.

A. B
i1 i
0
N\ &
{ CN+]AN+] J

and Ay = Dygs By = Dy ey G = Dy
with the elementary matrices
( <¢E,¢§> , 0 s —-<ux¢§,¢;> W
D, = S - <D ¢7,e0>
k—a<¢§,ux¢§>,-(1‘a)<¢E,Dx¢§>,a<ux¢§,ux¢§>+(1-0)<DX¢E,DX¢;>J
where <f,g> = f fgdx is the scalar product in L, (Q(t))

(L)

and the right~hand side

i - <L (u,D), 4>

r+

[

L(z) = - <l (u,D), ¢ >

[

t t .
0<Lu,ux¢i>4-(i-u)<Lh,Dx¢i> i=0, ... ,N+1,
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One observes neTe = feature of the gric generation method,
which we call a duality principle: ‘

1f for any inteper i both functions u'cg and htdz can

be expressed as a linear combination af basis tunctions
¢!, the syster of Egs. (2.2 - 2.4) becomee linear dependent .
Hénc&, function x(f,t) cannot be uninue iv determined from
this svstem, that ic grid peint pesitimne are undetermined.

Let X3 = X; = €'[0, N+1]. Then u,h calculated by Egs. (2.2 -2.4)

satisfy the exact equations (].1) regardless of the choice of
the grid function.

3. FINITE ELEMENT FORMULATION FOR SHALLOW-WATER EQUATIONS

For the actual computations we replace in Eqs. (1.1) the
surface elevation h by the total water depth D as the new in-
dependent variable. Then we choose

X)=X>=X= {¢ £ Co[O, N+1], ¢ piecewise linear in [i,i+1],
i=0, ..., N}.

Because of this choice i{ is not necessary to discern between
basis functions ¢% and ¢§ and therefore basis functions are
denoted by ¢; from hereon. Furthermore it must be guaranteed
that x 1t monotone (see section 1) in order to prevent crogs-—
ing of grid points. This property is generally established by
the use of regularisation terms [5]. However, this problem is
of no concern 1if only the movement of the boundary points is
considered. Then x is invertible, that is £ = x 1 (x,t), hence
One can write

N+j

i=0
N+ | ., N+1 .
L u (), (x 1 (x,1)) = :izo u (234, (x)
N+

BPIRACTHC

u(x,t)

D(x,t)

where xi(t), u; (£) and D;(t) are the time dependent coeffi-
cients which have to be determined from Egs. (2.2-2.4) and

¢i is the usual piecewise linear finite element basis function
at node £ = 3.

From the above equations one gets the spatial and temporal
derivatives

N+1 "
6, t) = ] 0.(e)¢ (%)
i=0

www . fastio.com
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Ine duality principle appears now in.the form:

L . . .
The fact that uxﬁi,Dxc§e ¥ {i.e. are continuouves and piece~
wise limear) is eguivalent to u,,h, = constant for

L. s
xesupp ¢i(i.e.[%;_;,%;47]). That means: 1{ v and D are
straight lines passing through the node x;, then the equa-
tion for x; will be linearly dependent on those for u and

D, so that %, cannot be calculated,
4, BOUNDARY CONDITIONS

The characteristics of the shallow-water eguations are
given by the eigen-values X,z =ut VgD which follow from the
two equations (1.1).

Hence g%'= u ? fgﬁrholds along a characteristic.

Each characteristic will reach the moving boundary 3(t)
after a finite time. Correspondingly:from each boundary point
exactly one characteristic starts into the interior. This holds,
because the distance s = ix-—xbl between a characteristic and
the boundary point X, obeys the differential equation

ds

Jo - uwx) * veD(x) - U(xb),

which follows from the difference of the velocities at the
boundary point and the current position x.
Expansion of u(x) and D(x) at x leads to

d
E%— = + /gD [ s3/2 4 o(s).

X

Solving for s results in

i Je Dx‘ 12

s = X - — t

\ 2

which is wvalid only in the vicinity of the boundary.

This formula shows, since IDx(xb)| is different from zero, that
a characteristic starting from a position x, reaches the
boundary in a finite time. Moreover, characteristics radiating
from different positions at the same instant of time cannot
intersect at the boundary. Hence the boundary 30(t) is not in-

cluded in the domain of dependence of the initial distribution
(for t > 0).

Therefore, exactly one boundary condition for either u or h
has to be specified. In the case of a moving boundary this is

obviously the condition D = 0, because the boundary is defined
by this equation.

ClibPD www fastio.com
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Dt(xl)
2 Dx()i] ")

1
= U-J"’Eu;‘f

on a fixed interior grid, where Dx(xi -) denotes the one-sided
derivative of D . 1If consistency of the integration echeme at
X] 1s assumed, using {(1.1), one obtains

. 1 v D; +D u;
Ky o= u1+5u[-“ b X
2D
X
] Lxy + b Lxy
= E (U;-*U])-—-———A-—— D}D\'_ -—Q—UX(}\']) (4.5)

where Dxx approximates the difference quotient

Dx(x1+) —Dx(xl—)
(Axl + 4% ) /2

and bx) denotes the grid spacing Xj - Xp.
5. NUMERICAL RESULTS

The approach for the numerical solutjon of Egs. (1.1) is
to use a fixed grid for the interior and to employ Eqs. (4.2 -
4.4) to calculate the time-dependent positions of the boundary
points as well as the velocity values. In order to have overall
stability one couples a stable method for the interior grid
points (e.g. upwind scheme /Lax-Wendroff scheme) with equations
(4.2 - 4.,4). One additional difficulty must be overcome. If
the boundary point moves, the grid spacings A%y, Axpy) become
very irregular with respect to the fixed grid spacing 4x, so
the error will grow. In that case fixed grid points are acti-
vated or deactivated according to the rule that

AX 3
FER T P I
Two model problems were calculated, which exhibit large

movements of the boundary points:
1. The still water depth is defined by the parabola

B(x) = 7 (1-x?)
and the initial conditions are given by
]
D(x,0) = z~(x-0.25)4-H(x), u(x,0) = 0.

Comparisons of the numerical calculations with the exact
solution [7] show reasonable results as depicted in Fig. 2.
Small oscillations can be observed for interior grid points
which are due to the finite-element method employed.
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Tie location of the boundary pcinte ic 1¢ be caleulated
from thic condition. Usually,extrapolation of water depth D isg
performec 17 & fixed grid ie used. By Tavlor expansion one
gets the value of D(x) in terms of Dy, D,, ... (respectivel;
D, Dx-ys -0u). Setting D(xp) = 0 yielde an implicit equation
for the boundary point xy [3, 41, 1t ig reported that second
order extrapolation exhibits some kind of instabilities espe-
clallv in cases where a bore nezr the boundarv exists.

In contrast, when 2 moving grid ie used interpolation is
unnecessary. One simply drops the variational equation (2.3)

for hfor weight functione ¢{s %N+ and adds the natural condi-
tions

Dy

0, DN+] = 0. (6.1)

Hence we demand D e X': Xn {D(O) = D(N+1) = 0}.
From the duality principle it follows that o ¥ 1, because

n

'\D . .
(1=a)2= ¢p ¢ X' must be assured. This condition prevents
ax *0

Eqs. (2.2 - 2.4) from becoming linear dependent and hence guar-
antees that x; and iw+’ are uniquely determined.

The equations, valid at the boundaries, are directly de- s
rived from Eqs. (2.2 - 2.4) keeping in mind that integration
is only performed over intervals [xg,x%;] and [xN'XN+l}’ re-
spectively. For i = 0 we find

-

. . du ¢ t.
<u-uxx+u E+g¥(D-H), tg>= 0O (4.2)
ﬁ(; = 0 (4.3)
ca)eb-D 5+u® ,pBu 3Dt
(1me)<D-D R+ u" 4D, 24> = 0 (4.4

where Eq. (4.3) replaces the variational equation for D and the
first term in Eq. (2.4) vanishes because of Eq. (4.2). In a
similar manner the equations at the boundary point Xy, are
found.
It is necessary that —2] > EE,] < OJ
3x ' [xq,x%] ox [xN,xN ]

- . +
in order to have a positive water depth near the bounéary.
Solving for %; results in '

Uy D00 >+ D <u,b0 >+ (D) ~D_%)) < ¢1,40 >
)-{0 =

2DX<¢1,¢O >

D] —DXX]

I
«
—
+
ra]
c
[on]
+

2D
X
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SHELLOW WATER ECUATION

N
h TIME--STEPS/RUTSAR
I T=T= 0.0 i
= £ = T= [.E00 F
+ = T 1,000 i3
« x = T= }.5800 20
oo ¢ - T- 2.000 26
ol
[
ow
D:d—
L
.
=< o
™
c‘_
o
G‘ Ll Ll
-2.0 -1.% -1.0 -0.% 0.9 0.5 1.0 1.5

X-AX1S
ERROR TOLERANCE EPS: §.1D-D3

Fig. 2: Numerically calculated water depth at different
times for problem 1. The analytic solution is a
plane surface moving periodically to and fro.

2. For the second problem the stil] water depth is described

by
2
H(x) = HG-%U—%—):{? ; B(1) = O

while the initial conditions are of the form
D(x,0) = asin(l{-; (x+1))+H(x),u(x,0) = 0.

Results are shown in Fig. 3.
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orALLOW WATEZR EQUATION

iy TIME--STEPS/BUTSAR
o=-T= 0.0 0
2] s - T= 0,500 c
o + - T= 1.000 11
: x - T= 1.500 17
|

WATER DEFTH

ERROR TOLERANCE EPS: 0.1D-03

Fig. 3: Surface elevation at different time instants for
problem 2,

6. CONCLUSIONS

General principles for the construction of an adaptive
grid were used to calculate the time dependent domain together
with the solution of the shallow-water equations. It is shown
that a straight forward approach to insert the boundary condi-
tions (in fact the definition of the boundary) fits perfectly
in the framework of the grid generation method. In case of a
smooth behavior of the solution in the interior,a fixed grid
can be used. It is preferable to use clasgical nimerical tech-
niques for the fixed grid, which are much less time consuming
compared with the fully adaptive scheme.

It should be pointed out that Eq. (4.5) demonstrates the
limit of application of the scheme since the second term de-
scribes a viscous effect, which must be limited to get reason-
able results. However, for rather small variations of both the
surface elevation and the bottom line the calculations per-

formed so far are encouraging to extend the method to two-
dimensional cases.
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