
A Java Based High Performance Solver for
Hierarchical Parallel Computer Architectures

Thorsten Ludewig1, Jochem Häuser2, Torsten Gollnick3 and Wuye Dai4

University of Applied Sciences Wolfenbuettel, Salzgitter, Germany

and

Hans-Georg Paap5

HPC Consultant, Barbing, Germany

Keywords: Hierarchical parallel computer architecture, Java HPC, client-server
computation, OOP, Internet-based computing, Internet-based data access, diverse scientific
and engineering disciplines, collaborative engineering, portable HPC and geometry
framework, legacy code integration, architecture independence, HPC without libraries,
complex 3D geometries, just in time solver, Java Performance.

I. Introduction
N [1] the Java Ultra Simulator Technology (JUST) solver was presented, whose parallel strategy is based on the Java
thread concept. While the thread concept work well with an SMP (Symmetric MultiProcessor) architecture, it
cannot be applied to hybrid parallel systems, comprising nodes with distributed memory as well as multiple

processors per node sharing memory. This type of architecture is hitting the market right now, for instance SUN`s new
Fire V20Z, based on Athlon 64 bit technology, and, because of the excellent price/performance ratio, will gain wide
acceptance in scientific computing. In addition, as was demonstrated using a Java test suite [1, 5, 6], substantial
progress has been made over the last three years in Java's numerical performance as well as parallel efficiency. These
test cases (e.g. matrix multiplication, Mandelbrot set or a Laplace solver) were utilized to perform almost one-to-one
source codes comparisons,between Java and C++.
In this paper we will present results and performance comparisons for real CFD simulations of complex 2D and 3D
geometries, using the two components of JUST, JUSTGRID and JUSTSOLVER, on several different parallel computer
architectures and will provide guidelines to achieving best efficiency from modern Java virtual machines (JVM).
Second, a strategy will be devised to obtain automatic parallelization on modern hybrid parallel architectures.
Furthermore, the layered software design will be presented.

JUSTGRID is a completely Java based software environment for the the user/developer of HPC software. JUSTGRID

takes care of the difficult tasks of handling very complex geometries (aircraft, spacecraft, biological cells,
semiconductor devices, turbines, cars, ships etc.) and the parallelization of the simulation code as well as its
implementation on the internet. JUSTGRID builds the computational Grid, and provides both the geometry layer and
parallel layer as well as an interface to attach any arbitrary solver package to it. JUSTSOLVER is a pure Java CFD solver
plugin for JUSTGRID, based on finite volume technique, and thus can be used for any kind of hyperbolic problem
(system of hyperbolic equations).

1 Central Systems and IT Division Head, Computing Center, Univ. of. Applied Sci., AIAA Member
2 CEO, HPCC-Space, AIAA Member
3 Senior Scientist, Univ. of. Applied Sci.
4 Senior Scientist, Univ. of. Applied Sci.
5 HPC Consultant, Barbing

American Institute of Aeronautics and Astronautics
1

I

II. Java Virtual Machine Performance Progress
All In [1][5][6] it was demonstrated that the single-

processor performance of Java is on par with C++ and the
speedup on common SMP machines is linear. In most
cases, Java performs better than C++ binaries compiled
with the well known and widely used GNU C Compiler
(GCC). Only the high optimizing compilers (e.g. Sun ONE
Studio Compiler for SPARC Solaris or the Intel Compiler
for Linux) are able to create binaries with the same or
sometimes slightly better performance. On an AMD
Opteron (AMD64) Processor dealing with the latest Java
Runtime Engine 1.5.0 the achieved single processor speed
running a 40 time 40 Matrix multiplication is about 65% of
a C code with static matrix dimensions. But in the common
way of use with variable (dynamic) matrix dimensions the
Java Runtime Engine is about 2 times faster than a GNU
C++ 64 Bit binary with all AMD64 optimization compiler
flags enabled.

III. Parallelization Issues for SMP and Hybrid Parallel Architectures
At present the parallelization of JUST is based on the Java thread concept. This thread concept has substantial

advantages over the PVM or MPI library parallelization approach, since it is part of the Java language. Hence, no
additional parallelization libraries are needed. Depending on the thread implementation of the computer's operating
system (OS) and the size of the numerical problem, dynamic load balancing on SMP hardware architectures is
automatically achieved. Starting with the end of 2004 AMD, Intel,Sun and other are delivering Dual Core Chips with
two CPUs in one processor. In 2005/2006 Sun will deliver their CMT processors (CPU Multi Threading) with 4
hardware threads per core and 4 cores per processor. With this Processor an application can get the advantage of using
16 hardware threads concurrently. In the near future we will see many new SMP like systems with the power of lots of
hardware threads and Java is the only environment that do not need any additional libraries to take advantage of these
processors.

However, this concept is not sufficient for the new hierarchical/cluster architecture, and therefore needs to be
extended.

A. Using Multi-Stage Parallelism
Today platforms for high-performance applications are more and more based on systems derived from the PC

industries, that is off the shelf boards are used, equipped with several CPUs. Moreover, the CPUs are designed as
multi-core platforms able to support real parallel streams of instructions. These powerful computers are then connected
with a network to a so called cluster to provide a stronger parallel-working system.

To take advantage of these systems, the hierarchy of parallelism has to take into account. The fine-grained
parallelism is located on the single computer where multi-core multi-processor systems are offered. Here the Operating
System (OS) is responsible for providing a mechanism to exploit the hardware. On top of the OS the Java Virtual
Machine (JVM) is adding convenience for the programmer for designing parallel working programs, that is, the
paradigm for parallelism (Java Threads) provided by the JVM must be used.

As soon as the software should also using resources connected by a network, another strategy for a coarse-grained
parallelism must be developed.

B. Fine-Grained Parallelism
The grid provided by a grid generator is converted into data format for the solver, either unstructured or bloc-

structured (or both). In case of a block structured grid there exists an inherent parallelism on the block level.
Additionally automatic load balancing using recursive bisection will be performed, based on domain decomposition,
one block per thread. Depending on block size it is also possible to decompose a block into smaller data sets. Since
every active component (multi-processor/multi-core) has access to the same memory, latency is not an issue in the
handling of multiple threads.

American Institute of Aeronautics and Astronautics
2

Illustration 1 Results for a sequential matrix
multiplication for a 40 times 40 matrix doing 10.000
iterations showing relations of variable java and c++ to
static c++ code.

1 2 3 4 5 6 7 8

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%
55,00%

65,00%

75,00%

85,00%

95,00%
100,00%

MatrixMult

1.4.2_05

1.5.0 i386

1.5.0 amd64

g++ 3.4.1 dynamic

g++ 3.4.1 static code!

Run

C. Coarse-Grained Parallelism
Every resource outside of a node or

even a computer can be another single
computer or another cluster. Depending
on the structure of a network information
speed varies.

These delays must be taken into
account in the development of a
parallelization strategy. To avoid severe
communication overhead each group of
blocks being distributed to other
computers needs to have a minimum
number of direct neighbors to exchange
data with. This is also achievable by
applying recursive bisection..

For setting up the network-connected
computer system for a coarse-grained
parallel architecture, there are two
possibilities.

The first strategy requires knowledge
of the current state of the system
including the properties of every single
node. These properties are at least the
number and the speed of processors and
the amount of memory. Maybe the type
of network connection is also of interest.

The second way requires a self
knowledge of every node. This
information must be offered to the whole
system. By using JINI, a package
provided by Sun Microsystems for
network-centric services, every node acts
as a service provider to all other nodes.
The system is able to recognize the
topology of itself and can establish high-
performance connections between the
nodes. The technology used for data exchange can be socked based or can use the New I/O (NIO) package, designed
for high performance scalable network and file I/O.

IV. JUSTGRID

JUSTGRID is the basis for
JUST (Java Ultra Simulator
Technology) that is a revolutionary
computing software that
dramatically improves the ability to
quickly create new kinds of
software systems across the whole
field of science and engineering,
embedded in an Internet-based
environment.

JUSTGRID is a completely Java
based software environment for the
the user/developer of HPC
software. JUSTGRID takes care of
the difficult tasks of handling very
complex geometries (aircraft,
spacecraft, biological cells,

American Institute of Aeronautics and Astronautics
3

Illustration 2 Scheme diagram of a hiracical topology fort HPCC

High Speed Interconnect

System Mainboard

Core
hardware
threads

CPU

Core
hardware
threads

Core
hardware
threads

CPU

Core
hardware
threads

System Mainboard

Core
hardware
threads

CPU

Core
hardware
threads

Core
hardware
threads

CPU

Core
hardware
threads

System Mainboard

Core
hardware
threads

CPU

Core
hardware
threads

Core
hardware
threads

CPU

Core
hardware
threads

System Mainboard

Core
hardware
threads

CPU

Core
hardware
threads

Core
hardware
threads

CPU

Core
hardware
threads

Illustration 3 JUSTGrid a framework for HPCC in engineering, science and life
sciences.

3D Complex Geometries

Parallelization

Dynamic Load Balancing

Internet

Collaborative

Engineering
Outsourcing

Interactive

Steering

System

Security

VisualizationSolver

Navier Stokes

(fluid dynamics)

Maxwell

(electromagnetics)

Schrödinger

(quantum mechanics)

Surface

Conversion

Debugging

Session Tracking
Results

semiconductor devices, turbines, cars, ships etc.) and the
parallelization of the simulation code as well as its
implementation on the Internet. JUSTGRID builds the
computational Grid, and provides both the geometry layer
and parallel layer as well as an interface to attach any
arbitrary solver package to it. See [1] for more information
about the structure and architecture of JUSTGRID.

D. JUSTGRID initial tasks

1) Loading and parsing grid, topology, command and
boundary condition files. JUSTGRID is able to
load Plot3D, GridPro, Tecplot and XML grid
files, topology, command and boundary condition
files are simple ASCII text files in ParNSS format. (ParNSS is our legacy flow solver written in C).

2) Determine block face connectivity and orientation. JUSTGRID detects all matching block faces and their
orientation (rotation) in one run for every block from the just loaded grid. [15]

3) Initialize block cells. JUSTGRID constructs a new instance of the selected cell implementation for each grid
cell in a block.

4) Compute cell metrics. As the last initialization task JUSTGRID computes the normal vectors for each cell face
and the finite volumes for each cell.

The time consumption in seconds for each initialization task is shown in tables 1 and 2 running on a Pentium 4
Mobile, 2GHz using Mandrakelinux 9.2. As a native compiled reference we select Amtec Tecplot 9.2 only loading the
same grid. Comparing the two tables we see that with the 274 blocks grid the server Java Runtime Engine (Hotspot) is
slightly slower as the client JRE but with the 1422 block grid the parsing time is less than 50% of the client JRE. This
behavior can be often recognized in many different parts of Java applications. Only if the CPU workload is high enough
the server JRE (Hotspot Engine) is able to find the CPU load intensive parts of the code and optimize these so called
Hotspots on the fly during the code is executed.

Spacecraft, 274 blocks, 342362 vertices, 256268 cells, 18.2 MB file size

American Institute of Aeronautics and Astronautics
4

Table 1 Initial task times in seconds for a 274 block grid

Runtime Parsing Connectivity Initialize Cell Metrics Total
1.4.2_06 client 4,98 0,13 1,13 2,43 8,77
1.4.2_06 server 6,37 0,53 1,11 2,49 10,68
1.5.0 client 4,70 0,12 1,06 2,23 8,52
1.5.0 server 5,75 1,33 1,02 2,31 10,59
Tecplot 9 25,00

Illustration 4 Determination of orientation of faces
between neighboring blocks as seen from block 1
(reference block). The reference block is always
oriented as shown and then the corresponding
orientation of the neighboring face is determined (see
Illustration 5)

Illustration 5 The 8 possible orientations of neigboring
faces are shown. Case 1 to 4 are obtained by successive
rotations. The same situation holds for cases 5 to 8 upon
being mirrored.

Aircraft, 1422 blocks, 2251694 vertices, 170832 cells, 123.1 MB file size

E. JUSTGRID run session
After the initialization tasks are finished JUSTGRID starts the computation session. The JUSTGRID session creates

one solver plugin instance and one computation thread per block. While the computation is running a monitor thread
automatically detects dead locks and gives always the current status of the running sessions. The monitor thread is also
responsible for storing the final result (e.g. Tecplot format) after the computation becomes ready.

V. JUSTSOLVER

JUSTSOLVER is a sample implementation of a 2D and 3D Euler CFD solver, a
plugin for JUSTGRID implementing the integral form of conservation laws. At this
time we are validating the correctness of the solver results so we use only simple
and well known samples.

F. Integral Form of Conservation Laws
In the following, the general case of a nonlinear system of hyperbolic

conservation laws is considered. Diffusion processes can be included as well, but the
numerics is not implemented for higher order
derivatives, such as third or fourth derivatives as
they occur in solitary waves or in the biharmonic
equation. Fluxes can always be partitioned in their
hyperbolic (finite propagation speed) part and
other processes like diffusion, dispersion etc. A
transformation is used from physical space to
computational space that comprises a set of
connected blocks (regular shaped boxes for
structured grids) or a set of connected domains

(equal size, unstructured grid). The boundaries of neighboring blocks or domains are
connected by a set of halo cells of size two, i.e., there is an overlap of two cells
between any two neighboring blocks or domains. This is a restriction in the current
Physics-Numerics package. The JUSTGRID allows the selection of any number of
halo cells.

The coordinate free
representation in integral
form of the system of conservation laws can be written as

where U denotes the vector of conserved variables

and F is the flux tensor.

American Institute of Aeronautics and Astronautics
5

Runtime Parsing Connectivity Initialize Cell Metrics Total
1.4.2_06 client 61,04 3,24 6,24 16,53 87,62
1.4.2_06 server 28,08 3,22 6,00 15,88 53,64
1.5.0 server 24,38 2,93 4,91 14,18 46,61
1.6.0 EA b12 server 24,54 3,14 4,93 14,06 47,19
Tecplot 9 268,00

Illustration 8 3D cone, computed with JUSTSOLVER, Mach-
number distribution, AoA 0, Mach 2.0

Illustration 6 2D sample with
JUSTSOLVER, 4000 iteration,
AoA 0.0, Mach 2.0

Illustration 7 3D sphere,
2000 iterations, AoA 0.0,
Mach 2.0

∂
∂ t∫V U dV∮

A V 
F⋅d A=∫

V

w dV

VI. Java Based Flow Visualization with JUSTVIS

To fulfill the requirements for a platform independent
application for CFD, a solution to post-process the
produced data should be provided.

Based on this requirement, a pure Java visualization and
analysis system, called JUSTVIS, is in development using
the VisAD framework based on Java3D. With Java3D as
the basis of the application, the graphics hardware on all
major platforms like Solaris, AIX, Linux, Windows, and
also on MacOS X is supported. VisAD offers the basic
functionality for a visualization system like data handling
for all major types of data (structured and unstructured
grids, multiblock grids and hybrid once), color
management, user interaction, and the basic visualization
techniques like isosurfaces, vector plots, pseudo color
mappings, etc.

Fig. 1 shows an
example of a 3D
visualization with an
isosurface.

JUSTVIS provides additional analysis methods for, e.g. geometry handling, that
helps the user with the analysis process. One example is the fully automatic
extraction of surfaces from both full configurations and computations with a
symmetry plane. Fig. 1 and Fig. 2 are showing the results for both cases.

To be able to extend other Java written applications with post-processing
capabilities JUSTVIS will be transformed into a library.

VII. Conclusions

G. JUST
For an existing grid we are now able to provide 100% pure Java based applications for all parts of a simulation for

systems of hyperbolic conservation laws, based on the integral form of the conservation equations.
With JUST we build a modern, well structured, easy to use and extensible framework (JUSTGRID), a sample

implementation of a flow solver (JUSTSOLVER) and a set of easy to use tools for: post-processing and visualization
(JUSTVIS), interactive steering (JUSTCONTOLCENTER [1]) and online visualization of a running simulation
(JUSTGRXTOOL[1]).

H. Java High Performance Computing Guidelines
There are two important hints:

1) you have to have an minimum of threads and numerical load before the HotSpot Server VM will show its
capabilities. In this case the number of threads is exactly the half number of CPUs. This must be compared with
other SMP systems.

2) The system doesn't need additional ,,expensive'' kernel resources if you are running much more threads than
installed CPUs in the system. There is a simple rule for multithreaded SMP running environments like these: start a
minimum of 4 times more threads than installed CPUs in the system and you get a good dynamic load balancing for
free.

I. Java
Today Java has become THE modern object oriented language for HPCC, providing excellent performance (at least

American Institute of Aeronautics and Astronautics
6

Figure 1: Visualization of a fully 3D configuration,
namely the EXTV (European Experimental Test
Vehicle), with the body surface and the isosurface at
T = 209K.

Figure 2 Surface of the
investigated configuration from a
computation with a symmetry
plane.

as fast as C++) and outstanding parallelization features, as well as internet and security features already implemented in
the core system.

1. Acknowledgments
This work was partly funded by Arbeitsgruppe Innovative Projekte (AGIP), Ministry of Science, Hanover,

Germany under Efre contract
The authors are grateful to Profs. Mark Cross and Mayur Patel, University of Greenwich, London, U.K. for many

stimulating discussions.
We are grateful to Mr. Jean Muylaert from ESA, ESTEC for technical information and discussions.

2. References

[1] Ludewig, T., Häuser, J., Gollnick, T., Paap, H.G.: JUSTGrid A Pure Java HPCC Grid Architecture for Multi-
Physics Solvers Using Complex Geometries. 42th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2004-
1091 Reno, NV, USA, 5-8 January 2004.

[2] Fatica, M., Jameson, A., Alonso, J., J.: StreamFLO: an Euler solver for streaming architectures. 42th AIAA
Aerospace Sciences Meeting and Exhibit, AIAA-2004-1090 Reno, NV, USA, 5-8 January 2004.

[3] Science and technology Shaping the Twenty-First Century, Executive Office of the President, Office of Science
and technology Policy, 1997.

[4] Foster, Ian (ed.): The Grid: Blueprint for a new Computing Infrastructure, Morgan Kaufmann Publishers, 1999.

[5] Häuser, J., Ludewig, T., Gollnick, T., Williams, R.D.: An innovative Software for HPCC., ECCOMAS 2001,
Computational Fluid Dynamics Conference, Swansea, September 2001, UK

[6] Häuser, J., Ludewig, T., Williams, R.D., Winkelmann R., Gollnick T., Brunett S., Muylaert J.: A Test Suite for
High-Performance Parallel Java, Advances in Engineering Software, 31 (2000), 687-696, Elsevier.

[7] Ginsberg, M., Häuser, J., Moreira, J.E., Morgan, R., Parsons, J.C., Wielenga, T.J. .: Future Directions and
Challenges for Java Implementations of Numeric-Intensive Industrial Applications, 31 (2000), 743-751, Elsevier.

[8] Moreira, J.E., S. P. Midkiff, M. Gupta, From Flop to Megaflop: Java for Technical Computing, IBM Research
Report RC 21166.

[9] Moreira, J.E., S. P. Midkiff, M. Gupta, A Comparison of Java, C/C++, and Fortran for Numerical Computing,
IBM Research Report RC 21255.

[10] Häuser J., Williams R.D, Spel M., Muylaert J., ParNSS: An Efficient Parallel Navier-Stokes Solver for Complex
Geometries, AIAA 94-2263, AIAA 25th Fluid Dynamics Conference, Colorado Springs, June 1994.

[11] Häuser, J., Xia, Y., Muylaert, J., Spel, M., Structured Surface Definition and Grid Generation for Complex
Aerospace Configurations, In: Proceedings of the 13th AIAA Computational Fluid Dynamics Conference -Open
Forum, June 29 - July 2, 1997, Part 2, pp. 836-837, ISBN 1-56347-233-3.

[12] Häuser J., Williams R.D., Strategies for Parallelizing a Navier-Stokes Code on the Intel Touchstone Machines,
Int. Journal for Numerical Methods in Fluids 15,51-58., John Wiley & Sons, June 1992.

[13] Häuser, J., Ludewig, T., Gollnick, T., Winkelmann, R., Williams, R., D., Muylaert, J., Spel, M., A Pure Java
Parallel Flow Solver, 37th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 99-0549 Reno, NV, USA, 11-
14 January 1999.

[14] Winkelmann, R., Häuser J., Williams R.D, Strategies for Parallel and Numerical Scalability of CFD Codes,
Comp. Meth. Appl. Mech. Engng., NH-Elsevier, 174, 433-456,1999.

[15] Häuser, J., Eiseman, P., Xia, J, Cheng, Z., Parallel Multiblock Structured Grids, Handbook of Grid Generation,
CRC Press LLC, 12-1, 0-8493-2687-7,1999.

American Institute of Aeronautics and Astronautics
7

