
In the following some material for reference (no-
tation, glossary, and mathematical definitions) as
well as for review (mathematical definitions) is
given. 

This material is constantly updated  (August  4,
2005).

The notation in Appendix 1 describes the sym-
bols used in our  publications concerning  Heim
Quantum Theory (HQT). 

The glossary of Appendix 2 describes the special
terminology used in HQT.

The glossary of  Appendix  3 describes and ex-
plains the special mathematical terminology used
in Heim's original work.

The mathematical definitions in Appendix 4 refer
to  definitions used  in modern physics,  and are
meant to facilitate the reading of our papers. 

Appendix 1: Notation and Physi-
cal Constants

Ã value for the onset of conversion of photons
into gravitophotons.

A denotes the strength of the shielding poten-
tial caused by virtual electrons. 

Compton wave length of the electron

C= h
me c

=2.43×10−12 m ,   ƛC=C /2 .

c speed of light in vacuum 299,792,458 m/s ,

(1/c2 = ε0 µ0). 

D  diameter  of  the  primeval  universe,  some
10125 m  that contains our optical universe. 

DO diameter  of  our  optical  universe,   some
1026 m.

d diameter of the rotating torus.

dT vertical distance between magnetic coil and
rotating torus.

-e electron charge -1.602 × 10-19 C.

e z unit vector in z-direction.

Fe electrostatic force between 2 electrons.

Fg gravitational force between 2 electrons.

Fgp gravitophoton force, also termed Heim-Lo-
rentz force, F gp=p e 0 vT ×H .

G = Gg + Ggp + Gq = 6.67259 × 10-11 m3 kg-1 s-2,

gravitational constant [1].
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Gg graviton  constant, G g≈G that  is  Gg de-
cribes  the  gravitational  interaction  without
the  postulated  gravitophoton  and  quintes-
sence interactions. 

Ggp gravitophoton constant, G gp≈1 /672G g .

Gq quintessence constant, Gq≈4×10−18G g .

g i k
 gp   metric  subtensor for the gravitophoton

in subspace   I2∪S2 (see  glossary for  sub-
space description).

g i k
 ph metric  subtensor for the photon in sub-

space  I2∪S2∪T1 (see glossary for subspace
description).

h Planck  constant 6.626076  × 10-34 Js,
ℏ=h /2 .

hik metric components for an almost flat space-
time.

ℓ p=  G ℏ3

c3 =1.6×10−35 m Planck length.

me electron mass 9.109390 × 10-31 kg.

m0   mass of proton or neutron       1.672623 ×
10-27 kg and 1.674929 × 10-27 kg.

Nn  number of protons or neutrons in the uni-
verse.

q electric charge.

R distance from center of coil  to location of
virtual electron in torus.

rN  distance from nucleus to virtual electron in
torus.

R_   is  a  lower  bound  for  gravitational  struc-
tures,  comparable to  the Schwarzschild ra-

dius.  The  distance  at  which  gravitation
changes sign, ρ, is some 46 Mparsec.  

R+  denotes an upper bound for gravitation and
is some type of Hubble radius, but is not the
radius of the universe, instead it is the radius
of the optically observable universe. Gravita-
tion is zero beyond the two bounds, that is,
particles  smaller  than  R-  cannot  generate
gravitational interactions. 

re classical electron radius 

re=
1

4 0

e2

me c2 =3 × 10−15m .  

rge ratio  of  gravitational  and  electrostatic
forces between two electrons. 

v velocity vector of charges flowing in the mag-
netic coil, some 103 m/s in circumferential di-
rection.

vT bulk  velocity  vector  for rigid rotating  ring
(torus) (see Sections. 3 and 4), some 103 m/s
in circumferential direction.

wgp probability  amplitude  (the  square  is  the
coupling coefficient) for  the gravitophoton
force (fifth fundamental interaction)

wgp
2 =Ggp

me
2

ℏ c
=3.87×10−49 probability  amplitudes

(or coupling amplitudes) can be distance de-
pendent.

wgpe probability  amplitude  for  emitting  a
gravitophoton by an electron

wgpe=wgp .

wgpa probability amplitude for absorption of a
gravitophoton by a proton or neutron

wgpa
2 =G gp m p

me

ℏ c
.

wg_q conversion amplitude for  the  transforma-
tion of gravitophotons and gravitons into the
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quintessence  particle,  corresponding to  the
dark energy (rest mass of some 10-33 eV).

wph probability  amplitude  (the  square  is  the
coupling coefficient for  the electromagnetic
force, that is the fine structure constant  α)

w ph
2 = 1

4 0

e2

ℏ c
= 1

137
.

wph_qp conversion amplitude for the transforma-
tion of photons into gravitophotons.

wq probability  amplitude for  the  quintessence
particle,(sixth fundamental interaction), cor-
responding  to  dark  energy  (rest  mass  of
some 10-33 eV).

Z charge number  (number of protons  in a nu-
cleus of an atom).

Z0 impedance of free space,

Z 0= 0

0

≈376.7 .

α coupling  constant  for  the  electromagnetic
force or fine structure constant 1/137.

αgp coupling  constant  for  the  gravitophoton
force.

γ ratio of probabilities for the electromagnetic
and the gravitophoton  force 

=w ph

wgp
2

=1.87×1046 .

0  permeability of vacuum 4π × 10-7 N/m2 . 

t metron area (minimal  surface  3Gh/8c3), cur-
rent value is 6.1510-70 m2.

Φ gravitational potential, Φ=GM/R. 

ω rotation vector.

Abbreviations

BPP breakthrough propulsion physics

GP Geomtrization Principle

GR General Relativity 

GRP General Relativity Principle

HQT Heim Quantum Theory

LQT Loop Quantum Theory

LHS left hand side

ls  light second

ly  light year

QED Quantum Electro-Dynamics

RHS right hand side

SR  Special Relativity

VSL Varying Speed of  Light

Subscripts

e electron

gp gravitophoton

gq from gravitons and gravitophotons into quin-
tessence 

ph denoting the photon or electrodynamics

sp space

Superscripts

em electromagnetic

gp  gravitophoton

ph photon 

T  indicates the rotating ring (torus) 
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Note:  Since  the  discussion  is  on  engineering
problems,  SI  units (Volt,  Ampere, Tesla or
Weber/m2 ) are used. 1 T = 1 Wb/m2 = 104 G
= 104 Oe,  where Gauss (applied to  B,  the
magnetic induction vector) and Oersted (ap-
plied to  H, magnetic field strength or mag-
netic  intensity vector)  are  identical.  Gauss
and Oersted are used in the  Gaussian  sys-
tem of units. In the MKS system, B is meas-
ured  in Tesla,  and  H is measured  in A/m
(1A/m = 4π × 10-3 G). 

Note: For a conversion from CGS to SI units,
the electric charge and magnetic field are re-
placed as follows:

ee /40  and H 4 0 H .

Appendix 2: Glossary of Physical
Terms
aeon Denoting  an  indefinitely long  period  of

time.  The  aeonic  dimension  can  be  inter-
preted as steering structure governed by the
entelechial dimension toward a dynamically
stable state.

apeiron the unlimited primeval substance in
Greek natural philosophy Used to charac-
terize the state of existence before the quan-
tized bang, similar to Penrose's mathematical
world or world of potentialities. 

anti-hermetry Coordinates  are  called anti-her-
metric if they do not deviate from Cartesian
coordinates,  i.e.,  in a  space  with  anti-her-
metric  coordinates  no  physical  events  can
take place.

canonical  Conforming to  a general rule or  ac-
ceptable procedure, a canonical form is the
simplest  form possible (for  instance a  unit
matrix).

condensation For matter to exist, as we are used
to  conceive it,  a  distortion from Euclidean
metric or condensation, a term introduced by
Heim, is a necessary but not a sufficient con-
dition.

condensor The Christoffel symbols of the sec-
ond  kind  k m

i become the  so  called con-

densor functions,  i
km  that are normalizable.

It  can be  shown that  i
km  the have tensor

character.  It  should be  noted that in the ei-
genvalue equations for the mass spectrum of
elementary particles, the  i

km  are eigenfunc-
tions and thus must not be confused with the
Christoffel symbols. It  should be mentioned
that Heim first writes a symbolic eigenvalue
equation that he later on using symmetry ar-
guments  transforms  into  a  mathematically
correct  eigenvalue equation. The term con-
densor  is derived  from the  fact  that  these
functions  represent  condensations of  the
spacetime metric. The condenser is an opera-
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tor  projecting a deformation in the 6, 8, or
12-dimensional  metronic  lattice into  ℝ4,
where  it  appears  as  an intricate,  geometri-
cally structured, compressed or “condensed”
lattice configuration. This condensed, struc-
tured region is what eventually is interpreted
as matter constituting an elementary particle.

condensor flux

conjunctor 

conversion amplitude  Allowing the transmuta-
tion  of  photons  into  gravitophotons,  wph_gp

(electromagnetic-gravitational  interaction),
and the  conversion of  gravitophotons  into
quintessence  particles,  wgp_q (gravitational-
gravitational interaction).

coupling  constant Value for  creation and de-
struction  of  messenger  (virtual)  particles,
relative to  the strong force (whose value is
set to 1 in relation to the other coupling con-
stants).

coupling  potential  between  photon-gravito-
photon (Kopplungspotential)  As coupling
potential the  term g i k

gp of the metric is de-
noted. The reason for using the superscript
gp is  that  this  part  of  the  photon  metric
equals the metric for the gravitophoton parti-
cle and that a  →sieve (conversion) operator
exists, which can transform a photon into a
gravitophoton by making the second term in
the metric anti-hermetric. In other words, the
electromagnetic  force  can  be  transformed
into a  repulsive gravitational like force, and
thus  can  be  used  to  accelerate  a  material
body. 

cosmogony (Kosmogonie)  The creation or ori-
gin of the world or universe, a theory of the
origin of the universe (derived from the two
Greek words kosmos (harmonious universe)
and gonos (offspring)).

covariant  For different inertial frames the laws
of physics are varying so as to preserve the
mathematical  form of  these  laws.  For  in-

stance,  Newton's  law of  gravitation  is  not
covariant under a →Lorentz transformation. 

entelechy (Greek  entelécheia,  objective,  com-
pletion) used by Aristotle in his work  The
Physics.  Aristotle  assumed  that  each  phe-
nomenon in nature contained an intrinsic ob-
jective, governing  the  actualization  of  a
form-giving cause. The entelechial dimension
can be interpreted as a measure of the quality
of time varying organizational structures (in-
verse to  entropy, e.g.,  plant  growth)  while
the aeonic dimension is steering these struc-
tures toward a dynamically stable state. Any
coordinates outside spacetime can be consid-
ered as steering coordinates.

differentiable manifold Contains a collection of
points,  each of which determines a  unique
position in  →Heim space.  The smoothness
feature is only applicable in the case where
the physical problem considered involves a
large number of  →metrons. Continuous and
differentiable  functions  are  supported.  The
differentiable manifold is a topological space
(open  sets)  and  is  locally equivalent  to  a
space  ℝn  which is of the same dimension as
the corresponding Heim space, i.e., there ex-
ists a one-to-one mapping between the open
sets of the Heim space and the ℝn. 

energy coordinates

epistemology  Theory  of  the  nature  of  knowl-
edge  especially with reference to  its  limits
and validity.

eschatology   Concerned with the final events in
the history of the universe.

event 

field activator (Feldkaktivator) flips the spin of
a metron, i.e., changes its orientation.

flucton (Flukton) being movable and compressi-
ble.

flux aggregate
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fundamental kernel (Fundamentalkern) Since

the function i m
 occurs in xm

=∫i m
d i

as the kernel in the integral, it is denoted as
fundamental kernel of the poly-metric. 

Galilean spacetime  A spacetime in which the →
Galilei transformation is valid

Galilei transformation

geodesic  zero-line  process This  is  a  process
where the square of the length element in a
6- or 8-dimensional →Heim space is zero. 

gravitational limit(s)  There are three distances
at which the gravitational force is zero. First,
at any distance smaller than R_, the gravita-
tional force is 0. Second, 

gravitophoton  (field) Denotes  a  gravitational
like field, represented by the metric sub-ten-
sor, g i k

 gp  , generated by a neutral mass with
a smaller coupling constant than the one for
gravitons,  but  allowing  for  the  possibility
that  photons  are  transformed into  gravito-
photons.  Gravitophoton  particles  can  be
both attractive and repulsive and are always
generated  in pairs  from the  vacuum under
the presence of virtual electrons.  The total
enery extracted from the vacuum is zero, but
only attractive gravitophotons are absorbed
by protons or  neutrons.  The gravitophoton
field represents the fifth fundamental interac-
tion.  The  gravitophoton  field generated  by
repulsive gravitophotons,  together  with the
→vacuum particle, can be used to reduce the
gravitational potential around a spacecraft.  

graviton (Graviton) The virtual particle respon-
sible for gravitational interaction.

heimline  In analogy to  →worldline, the path of
a particle in →Heim space. 

Heim-Lorentz force Resulting from the newly
predicted  gravitophoton  particle  that  is  a
consequence of the →Heim space H8. A met-

ric subtensor is constructed in the subspace
of coordinates  I2, S2 and T1, denoted as her-
metry form H5. The equation describing the
Heim-Lorentz force has a form similar to the
electromagnetic Lorentz  force,  except,  that
it  exercises  a  force  on  a  moving  body  of
mass m,  while the Lorentz force acts upon
moving  charged  particles  only.  In  other
words, there seems to exist a direct coupling
between  matter  and  electromagnetism.  In
that respect, matter can be considered play-
ing the role of charge in the Heim-Lorentz
equation.  The  force  is  given  by

F gp=p e 0 vT×H . Here  Λp is a coefficient,
vT the velocity of a rotating body (insulator)
of  mass  m, and  H is  the  magnetic  field
strength. It should be noted that the gravito-
photon force is 0,  if velocity and magnetic
field strength are parallel. 

Heimian metric
Heim space A Heim space is a discrete space of

6, 8, or 12 dimensions, denoted as H6, H8, H12

respectively, with three  spatial  coordinates
of + signature,  while any other  coordinate
has - signature. In a Heim space an elemen-
tal surface,  termed  →metron,  exists.  If the
surface considered comprises a large number
of metrons, a Heim space can be considered
a  →differentiable manifold endowed with a
→Heimian metric. 

hermetry  form  (Hermetrieform) The  word
hermetry is an abbreviation of hermeneutics,
in our case the semantic interpretation of the
metric. To explain the concept of a hermetry
form, the space H6

 is considered. There are 3
coordinate  groups  in  this  space,  namely

s3=1 ,2 ,3 forming the physical space

ℝ3, s2=4 for  space  T1,  and

s1=5 ,6 for  space  S2.  The  set  of  all
possible coordinate groups is denoted by S=
{s1,  s2,  s3}. These  3  groups  may be com-
bined,  but,  as  a  general  rule  (stated  here
without  proof,  derived,  however,  by Heim
from conservation laws in H6, (see p. 193 in
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Elementarstrukturen  der  Materie,  Vol  I,
Resch Verlag 1996),  coordinates  5 and  6

must always be curvilinear, and must be pre-
sent in all metric combinations. An allowable
combination of coordinate groups is termed
hermetry  form,  responsible  for  a  physical
field or interaction particle, and denoted by
H. H is sometimes annotated with an index,
or sometimes written in the form H=(1, 2

,...).  This is a  symbolic notation only, and
should not be confused with the notation of
an n-tuple.  From the above it is clear that
only 4 hermetry forms are possible in H6. It
needs a  →Heim space  H8 to  incorporate  all
known  physical  interactions.  Hermetry
means that only those coordinates occurring
in the hermetry form are curvilinear, all other
coordinates  remain  Cartesian.  In  other
words,  H denotes  the  subspace  in  which
physical events  can take  place,  since these
coordinates are non-euclidean. This concept
is at the heart of Heim's geometrization of all
physical interactions, and serves as the  cor-
respondence  principle between  geometry
and physics.

hermeneutics (Hermeneutik) The study of the
methodological principles of interpreting the
metric tensor  and the eigenvalue vector  of
the  subspaces.  This semantic interpretation
of geometrical structure is called hermeneu-
tics (from the Greek word to interpret).

hermitian  matrix  (self  adjoint,  selbstad-
jungiert) A square matrix having the prop-
erty that each pair of elements in the i-th row
and  j-th column and in the j-th row and i-th
column are conjugate complex numbers (i 
- i). Let A denote a square matrix and A* de-
noting the complex conjugate matrix.  A† :=
(A*)T = A for a hermitian matrix. A hermitian
matrix has real eigenvalues. If  A is real, the
hermitian requirement  is replaced  by a  re-
quirement of symmetry, i.e.,  the transposed
matrix  AT = A .

homogeneous The universe is everywhere uni-
form and isotropic or, in other words, is of

uniform structure  or  composition  through-
out.

hyperstructure (Hyperstruktur) Any lattice of
a  →Heim space that  deviates from the iso-
tropic Cartesian lattice, indicating an empty
world,  and  thus allows for physical events
to happen. 

inertial transformation (Trägheitstransforma-
tion) Such a  transformation,  fundamentally
an interaction between electromagnetism and
the gravitational like gravitophoton field, re-
duces the inertial mass of a material object
using  electromagnetic  radiation  at  specific
frequencies.  As a  result  of  momentum and
energy conservation in 4-dimensional space-
time, v/c = v'/c',  the Lorentz matrix remains
unchanged.  It follows that  c < c'  and v  < v'
where  v and  v' denote the velocities of the
test body before and after the inertial trans-
formation, and c and c' denote the speeds of
light, respectively. In other words, since c is
the vacuum speed of light, an inertial trans-
formation  allows  for  superluminal  speeds.
An inertial transformation is possible only in
a 8-dimensional →Heim space, and is in ac-
cordance with the laws of SRT. In an Ein-
steinian universe  that  is 4-dimensional and
contains only gravitation, this transformation
does not exist.

isotropic The universe is the same in all direc-
tions, for instance, as velocity of light trans-
mission  is  concerned  measuring  the  same
values along axes in all directions.

Lorentzian metric

Lorentz transformation This transformation in
spacetime reflects the fundamental fact that
light travels with exactly the same speed  c
with  respect  to  any  inertial  frame

x '= x−vt
1−v2/c21 /2 ,  y '= y , z '=z ,

t '= t−vx /c2

1−v2 /c21/2 .                         
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Minkowski spacetime A spacetime in which the
→Lorentz transformation is valid. 

ontology A particular theory about the nature of
being.

partial  structure  (Partialstruktur) For  in-
stance, in H6,  the metric tensor that is hermi-
tian comprises  three  non-hermitian metrics
from subspaces  of  H6.  These metrics from
subspaces are termed partial structure. 

poly-metric The term poly-metric is used with
respect to the composite nature of the metric
tensor in 8D →Heim space. In addition, there
is the twofold mapping ℝ4

 →  H8→  ℝ4.

probability amplitude  With respect  to  the six
fundamental interactions predicted from the
→poly-metric of the →Heim space H8,  there
exist six (running) coupling constants. In the
particle picture, the first three describe gravi-
tational interactions, namely wg (graviton, at-
tractive),  wgp (gravitophoton,  attractive and
repulsive),  wq (quintessence, repulsive). The
other three describe the well known interac-
tions, namely wph (photons),  ww (vector bos-
ons,  weak  interaction),  and  ws (gluons,
strong  interaction).  In  addition,  there  are
two  →conversion amplitudes predicted that
allow  the  transmutation  of  photons  into
gravitophotons (electromagnetic-gravita-
tional  interaction),  and  the  conversion  of
gravitophotons  into  quintessence  particles
(gravitational-gravitational interaction). 

protosimplex

prototrope (Prototrope) first in time *protohis-
tory*  b : beginning : giving rise to *proto-
planet

quantized  bang  According to Heim, the  uni-
verse did not evolve from a hot big bang, but
instead, spacetime was discretized from the
very beginning, and such no infinitely small
or  infinitely  dense  space  existed.  Instead,
when the size of a single metron covered the
whole (spherical volume) universe,   this was

considered the beginning of this physical uni-
verse.  That  condition can be considered as
the mathematical initial condition and, when
inserted into Heim's equation for the evolu-
tion of the universe, does result in the initial
diameter of the original universe [1].  Much
later, when the metron size had decreased far
enough, did matter come into existence as a
purely geometrical phenomenon.

selector (Selektor)

shielding field (Schirmfeld)

sieve operator see → transformtion operator

transformation  operator  or  sieve  operator
(Sieboperator)  The  direct  translation  of
Heim's terminology would be sieve-selector.
A  transformation  operator,  however,  con-
verts a photon into a gravitophoton by mak-
ing the coordinate 4 Euclidean. 

vacuum particle responsible for the accelera-
tion of the universe, also termed quintes-
sence  particle  The vacuum particle repre-
sents the  sixth fundamental interaction, and
is  a  repulsive gravitational  force  whose
gravitational coupling constant  is given by
4.3565×10-18 G. It only interacts with gravi-
tons and positive (repulsive) gravitophotons,
but not with real or virtual particles.

worldline Path of a particle in spacetime ℝ4.
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Appendix 3: Heim's Original
Mathematical Terminology

Appendix 4: Mathematical Defini-
tions

affine transformation is defined by a mapping
(→lambda matrix) from coordinates x  x':

x '=
 xa that guarantees the invari-

ance  of  the  spacetime  interval
 xB – x A2−c2t B−t A2=0 between  two

→worldpoints A and B. It  is necessary that
the vacuum speed of light as an upper  limit
remains invariant  between any two  inertial
systems. The →Lorentz transformation satis-
fies this requirement. 

bijective mapping A mapping f is bijective if   f
is  both  →injective  and  →surjective. The
→inverse mapping f-1 is defined  by    f x0
x0 that is,  f-1 associates with each y0∈Y the
corresponding x0∈D(f) for which f x0 = y0. 

boost parameter

Casimir invariants the scalar product of  →Lie
group generators  is known as  Casimir  in-
variant that  commutes with all the genera-
tors (e.g.,  J 2  commutes with  J1,  J2, and J3)
and  is  therefore  invariant  under  all  group
transformations. The eigenvalues of the Ca-
simir invariants are the conserved quantum
numbers of the symmetry group. The groups
O(3)  and  SU(2)  have  only  one  invariant
while the SU(3) group has two invariants. 

Clifford algebra in the Dirac equation four con-
stant coefficients  occur that are non-com-
mutable  square  matrices.  Thus  the  wave-
function  ψ(x)  is  a  column  matrix.
The    matrices  satisfy  the  condition

{  }:=  =2 where  

is the  Minkowski space-time metric  tensor
(diagonal  form).  The    matrices  are  4×4
matrices. 

cotangent  space  consider  a  point  P and  its
→tangent space TPM on a →manifold M. Let
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xμ(λ) be a smooth →curve through P on M.
The directional derivative  of a smooth func-
tion f on M at  P (tangential vector  v)  with
respect to the curve  xμ(λ) is a differentiable
mapping TPMℝ.  The  set  of  all  →one-
forms ω(v) at P that map TPMℝ forms the
dual vector space to TPM, termed the cotan-
gent space T*

PM. Bundling together all T*
PM

at different points on M, gives the cotangent
bundle T*M.

curve in a manifold M if   is chosen to be the
distance  along  the  curve,  a  curve  para-
metrized  by   has  the  tangent  vector

dx/d  , =1,2,. .. , n.

diffeomorphism  A differentiable, bijective map-
ping f for which both  f and f-1 are smooth,
i.e.,  arbitrarily often  differentiable (note:  a
homomorphism only requires that    f and f-1

are  continuous). It  should be noted  that  a
diffeomorphic mapping of generalized coor-
dinates  q  to  coordinates  q' leaves the equa-
tions  of  motions invariant  that  are  derived
from Lagrange function L.

differentiable  manifold A  →manifold can  be
covered by patches (charts). Different coor-
dinate systems can be set up on any part of a
manifold. For two overlapping patches, two
different coordinate systems can be defined
in the overlap region,   xμ  and xμ'=  xμ'(xμ  ).
Any function  f in the overlap region that is
differentiable with respect to coordinates  xμ

should also be differentiable with regard to
xμ'. This is true if the transformation xμ'(xμ  )
between the two coordinate systems is dif-
ferentiable. Such a manifold is called a differ-
entiable manifold. If there exist n derivatives
there is a  Cn manifold. For  n=∞,  the mani-
fold is C∞. 

dual space →cotangent space.

fiber bundle

groups: 

  compact Lie group a compact Lie group is a
→Lie group whose parameters are defined in
a closed interval, for instance, for U(1) angle
θ varies in the interval [0, 2π]. 

  continuous groups  contain an infinite number
of elements. A simple example is the set of
all complex wavefactors of a wavefunction
in quantum mechanics written in the form U
(θ)=e iθ . The product of two phasefactors is
U(θ) U(θ')= U(θ+θ') and the inverse is given
by U-1(θ)=U(-θ). These phase factors from a
group called  U(1).  This group is character-
ized by a single parameter, the angle θ in the
interval [0,  2π].  The group  is differentable
since dU = i U dθ and thus the derivative is
an element of the  U(1). The group of rota-
tions in three-dimensional space the  →O(3)
group and the group of  →Lorentz transfor-
mations are also continuous groups.

  Lie group  the characteristic of a Lie group is
that the parameters of a product are analytic
functions of each parameter  in the product
that  is, if  U(θ)  =U(α)  U(β) then  θ=f(α,  β)
where  f is an analytic function. The analytic
property guarantees that the group is differ-
entiable so  that  an infinitesimal group  ele-
ment dU(θ)  can be defined. The  →Lorentz
group is an example of a noncompact group.
The boosts or transformations from one iner-
tial frame to another are represented by non-
unitary  matrices.  The  →boost  parameter
η=tanh-1(v/c) is not restricted to a closed in-
terval. 

  Lorentz group

  orthogonal groups O(n)  is the group of rota-
tions  in an  n-dimensional Euclidean space.
The elements of  O(n) are  n×n real valued
matrices that have n(n-1)/2 independent pa-
rameters. 

     O(3) is the three-dimensional rotation group
and  leaves  the  distance  x2+y2+z2 invariant.
The parameters are the Euler angles α,  β,  γ
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from classical mechanics. The rotation ma-
trix is denoted by R(α, β, γ) and can be writ-
ten as a sequence of three rotations. 

  Poincaré group 

special  unitary  groups SU(n) has
det  SU(n)=+1  with  (n2-1)  independent  ele-
ments. 

  special unitary group SU(2) and SU(3) repre-
sent  two-  and  three-dimensional  matrices
and  are  associated  with  isotopic  spin  and
color. A SU(2) rotation leaves the magnitude
of  the  original  vector  invariant  and  has
det  SU(2)=1. 

The  SU(3)  group  has  eight  independent
→group generators,  represented  by   3×3
→hermitian  matrices  and  denoted  as Fi,
i=1,...,8.  The matrices obey special commu-
tation rules. 

 unitary group the elements of the unitary group
U(n) are given by  n×n  →unitary matrices.
The determinant det U(n)=1. 

group generator:

   Lie group generator let G be a Lie group and
operators  Fk be its group generator in anal-
ogy to  the  angular momentum operator  Jk

for  the  →rotation  group. The  operator  Fk

generates an element of  G in the same way
that   Jk   generates  a  rotation,  i.e.,

U =e−i k Fk . The number of generators  is
equal to the number of independent parame-
ters in  G. Thus there are n(n-1)/2 generators
for O(n) and n2-1 generators for SU(n). Gen-
erators of the orthogonal and unitary groups
are  represented  by  →hermitian or  self-ad-
joint  matrices.  The  commutation  rule  is
given by [Fi, Fk]=i cikm Fm. The cikm  are called
the structure constants. For  O(3) these val-
ues are either ±1 or 0. The structure of the is
different from the group structure. The form
the  basis  of  a  linear  vector  space  that  is
known as  Lie algebra.  There exists both a

scalar product and a vector product (in form
of  the  commutation  relation).  This  vector
product  is also called  Lie product.   For in-
stance,  for  the  total  angular  momentum
J2=J1

2 +J2
2 +J3

2 . 

  rotation  group the  rotation  of  wavefunction
about  a direction given by unit  vector  n is
written  as R =e−i  n⋅J , where  J is  the
angular  momentum operator.  For  an angle
dθ,  the  rotation  is  given  in first  order  as

R=1−id  n⋅J . The  combined  rota-
tions  about  the  x and  y-axis  is  given  by

R =1−i d  J 11−i d  J 2 . Revers-
ing the order  of rotations and forming the
difference  is  written  as  the  commutator
[J1, J2] dθ dϕ. Angular momentum operators
obey  the  commutation  relation
[Ji,  Jk]=i εikm  Jm. Operators  Jm are called the
group generators. This means that  O(3) be-
longs to a non-commutative or non-Abelian
group. In contrast,  O(2) and U(1) are Abe-
lian groups. 

hermitian matrix

homeomorphism is  a  →bijective  mapping
f: AB for which both f  and f-1  are continu-
ous. 

homomorphism of O(3) and SU(2)   there is a
homomorphism (many-to-one mapping) be-
tween O(3) and SU(2) that is, a real three-di-
mensional rotation can be associated with an
element of SU(2).   In other words, a vector
(x,  y,  z)  can be defined from the  complex
vector being transformed by SU(2)  which is
left invariant.  It  is possible to associate the
general matrix  R(α,  β,  γ)  with the complex
parameters of an  SU(2) matrix. This means
that the 3×3 real valued matrix O(3) can be
expressed by the 2×2 complex valued matrix
SU(2).  However,  the  relation  between  the
two  matrices  is not  one-to-one,  hence the
denotation homomorphism ( here two possi-
bilities exist).  
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injective mapping a mapping is injective if for
every x1≠x2∈D(f),  x1≠x2 implies  f x1≠ f x2

that  is, different points in the domain have
different images.  Therefore, the inverse im-
age is a single point in D(f). 

inverse  mapping for  an  →injective  mapping
f : D(f) Y the inverse mapping f-1 is defined
as to be the mapping  R(f)   D(f) such that
y0  ∈R(f)  is  mapped  onto  that  x0∈D(f)  for
which f x0= y0.

lambda matrix  given are  two  coordinate  sys-
tems x and x´ on a manifold. The transforma-
tion  matrix  Λ,  →spinor, is  defined  as


 ´= ∂ x ´

∂ x
.

Lie algebra →group generator, see  Lie group
generator.

Lorentz  transformation this  transformation
(→affine  transformation)  in  spacetime  re-
flects the fundamental fact that  light travels
with exactly the same speed  c with respect
to  any inertial frame (here  x and  x' denote
coordinates)

x '= x−vt
1−v2/c21/2 ,  y '= y , z '=z ,

t '= t−vx /c2

1−v2/c21 /2 .                         

manifold  A manifold is locally equivalent to an
n-dimensional  euclidean  space  ℝn.  That  is
manifold M has the same local topology.  M
therefore must be a topological space, which
means there is a collection of open sets that
cover it. Second, the structure of these open
sets,  within small regions,  is equivalent  to
the natural topology of ℝn. ℝn is a Haussdorf
space, which means that for any two differ-
ent points there exist non-overlapping neigh-
borhoods, and there exists a basis B in form
of a collection of open sets such that  each
subset of  ℝn  can be represented by a union

of elements of B. Therefore for manifold M
it is required that every point of  M belongs
to  at  least  one open set  of its basis  B and
there  exists  a  one-to-one  correspondence
with the points of some open set of ℝn . This
means that there is a  continuous →bijective
mapping from the open set of M to the open
set in ℝn. When these conditions are met, M
is called a manifold. Any function  f(P)  for
each point  PM can be re-expressed as a
function  g(xμ)  defined  on  ℝn.  A  manifold
does not  possess a metric, hence no scalar
product can be defined on a manifold, →one-
form.

mapping Given two sets X and Y with A⊂X. A
mapping f from A into Y associates with each
x∈X a single y∈Y, called the image of x with
respect to  f, and written as y=f x. The set A
is called the domain, D(f), of f. The range of
f,  R(f), is the set of all images. The inverse
image  of  element  y0∈Y  is  the  set  of  all
x∈D(f) such that f x= y0.

one-form  one-forms  are  the  extension  of  the
scalar product of u v of two Euclidean vec-
tors to  a  →manifold M. On M no metric is
defined, therefore a salar product cannot be
formed. A scalar product is considered as a
function. For a given vector u, the symbol u•
acts as a function that assigns to each vector
v a real number. This mapping is linear.  A
one-form ω  on  M is therefore defined as a
linear mapping that  is real-valued.  Because
of the linearity ω(v)=ωμvμ. Indices of a one-
form are in the lower position. A one-form
field is defined in the same way as a linear
function on vector fields. An example for a
one-form field is the gradient of a scalar field
f,  denoted as    f.  Taking as  v the tangent
vector  d/dλ to a curve  xμ(λ), one can write

ω f v = ∂ f
∂ x

∂ x

∂
.  
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partial derivative :=/x. The partial deriva-
tives are sometimes also considered as base
vectors in the corresponding coordinate sys-
tems, see →one-form. 

rank of tensor field tensors and tensor fields are
classified by their rank, denoted as   j

i.

Rank 0
0 are  called  scalars  and  are  real

numbers. A scalar field is a real valued func-

tion  f(P)  on  the  manifold.  Rank 1
0 are

called  contravariant  vectors.  They  corre-
spond to  a tangential vector  on a curve in
differential geometry. In a coordinate system
a vector can be resolved in its components.
In  general  the  upper  variable  denotes  the
number  of  contravariant  indices  and  the
lower one the covariant indices of  a tensor. 

spinor the wavefunction of the Dirac function is
a 4-component column matrix. These com-
ponents will be expressed by a different set
of  functions  and  also  be  rearranged  when
transformed from coordinate system x to x.
Since the  components  of   are  not  compo-
nents of a spacetime vector, but represent a
state  in which a particle can exist,  they do
not  transform  as  vector  components,  i.e.,
they do not follow any tensor transformation
law The transformation law for the ψβ com-

ponents  is  given by 
' =S   . The

matrix  S is  determined from the  covariant
form of the Dirac equation under a Lorentz
transformation. For matrix  Λ  see  →lambda
matrix. 

structure constants cijk  →Lie group generator.

surjective mapping

tangent space consider a point P on a manifold
M, for instance a point on a sphere embed-
ded in ℝ3. The set of all tangent vectors at P
of all curves  through P forms a vectorspace
over ℝ, denoted by TPM as the tangent space

to M at P.  All tangent vectors are in the tan-
gential plane through P. For the example of
the sphere TPM is the vetorspace ℝ2. 

tangent bundle The disjoint union of all →tan-

gent  spaces TM :=∪
P

T P M  is  itself  a

manifold of dimension 2n if M has dimension
n. The individual tangentspace TPM at point
P is called a fiber. 

tensor field assigns a physical property to every
point on the manifold. 

unitary matrix (unitär) let  A denote  a square
matrix, and A* denoting the complex conju-
gate matrix. If A† := (A*)T  = A-1, then A is a
unitary matrix,  representing the  generaliza-
tion of the concept of orthogonal matrix. If
A is real, the unitary requirement is replaced
by  a  requirement  of  orthogonality,  i.e.,
A-1 = AT. The product of two unitary matri-
ces is unitary.

unitary transformation used  in quantum me-
chanics, leaving the modulus squared of the
a complex wavefunction invariant, → unitary
group. 

world point, event, worldline a point (x, t) that
specifies  both  the  spatial  coordinates  and
time is called a  world point or  event.  The
evolution of a signal, represented by a para-
metrized curve (x(t), t) is termed worldline. 
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