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Abstract! 1. Java as a Programming Tool in

In this paper an overview is given of the “Have Java” Englneerlng

project to attain a pure Java parallel Navier-Stokes flow

solver (]ParNS$ based on the thread concept and remotéava, introduced in late 1995, was an instant success with
method invocation (RMI). The goal of this project is tothe Internet programming community. However, Java was
produce an industrial flow solver running on an arbitrary?ot considered to be a suitable language for software
sequential or parallel architecture, utilizing the Internetengineering in aerospace, and in particular for
capable of handling the most complex 3D geometries &Mmputational fluid dynamics (CFD). The reason simply
well as flow physics, and also linking to codes in othekvas that Java was lacking performance, because it was an
areas such as aeroelasticity etc. interpreted language.

Since Java is completely object oriented the code has beBgcently, however, work at IBM and elsewhere [1], [2],
written in an object-oriented programming (OOP) style[3] has shown that Java can provide high performance,
The code also includes a graphics user interface (GUI) #rough careful relaxation of Java's careful exception
well as an interactive steering package for the paraliélandling and transformations of the bytecode. .

architecture. The Java OOP approach provides profoundly early 1997, JavaSoft [4] released a major upgrade to
improved software productivity, robustness, and securityaya, called Java 1.1, that proved to be far superior in
as well as reusability and maintainability. OOP allowsyyerall performance and speed than its predecessor,
code construction similar to the aerodynamic desigpecause of the introduction of advanced concepts (e.g.
process because objects can be software coded affbnt handling) as well as the JIT (Just In Time) compiler.
integrated, reflecting actual design procedures. I the meantime, Java 1.2 has been released, and Java 2.0
addition, Java is the programming language of the Interngf expected for early 1999. Java 1.1 is a powerful OOP
and thus Java objects on disparate machines or evgmhgramming language that addresses every kind of
separate networks can be connected. programming the (aerospace) engineer might need. In

We explain the motivation for the design dParNSS addition, in 1997 the Java Workshop version 2.0 was
along with its capabilities that set it apart from other€leased by Sun Microsystems, one of an increasing
solvers. In the first two sections we present a discussion BEmber of Java development environments providing a
the Java language as the programming tool for aerospa@®ss platform development environment along with
applications. In section three the objectives of the Havéebugging tools, editor and project management. The
Java project are presented. In the next section the lay&@jor advantage is, however, that an interactive graphical
structures ofiParNSSare discussed with emphasis on theé3Ul (graphics user interface) is included that greatly
parallelization and client-server (RMI) layerdParNSS  alleviates the tedious task of explicitly coding such an
like its predecessoParNSS(ANSI-C), is based on the interface. The user graphical input is directly converted
multiblock idea, and allows for arbitrarily complex into Java code that can be combined with the engineering
topologies. Grids are accepted ridPro or Plot3aD Java code. Furthermore, Java WorkShop also allows
format. UsingGridPro property settings, grids of any size creation of Internet applications and web pages.

or block number can be directly read BarNSSwithout  \we pelieve that Java will profoundly change software

any further modifications, requiring no additionalgevelopment in the engineering area, provided that

preparation time for the solver input. In the last sectiongngineers are able to tap the vast resources of Java and to

computational results are presented, with emphasis @fmess advanced concepts like classes, threads,

multiprocessor Pentium and Sun parallel systems run kyrialization, or remote method invocation. The reasons

the Solaris operating system (OS). why Java should be considered a leapfrog technology for
aerospace software development are discussed in the
following section.

1.1 Java for Aerospace Applications

CFD along with wind tunnel and flight testing is a
respected analysis tool in many areas of aerospace design.
CFD is of particular importance for high speed flows
1. The title page shows the Ma number distribution computeghere wind tunnel data are difficult to obtain, or when the
by the C-code ParNSS. The JParNSS code is currentm]pact of a single physical phenomenon has to be
restricted to 2D. _ ) investigated. Aerospace design of today is marked by
2. The HavaJava project aims at a pure Java parallel 3D ﬂoﬂ’iminishing margins that can make or break a design. For

solver and is supported by the Ministry of Science and Cul- .
ture, Hannover, Lower Saxony, Germany. instance, the X-33 vehicle, a technology demonstrator for
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the next generation space transportation system, does aothitecture independence, and clumsy and unfriendly
have to reach LEO (Low Earth Orbit). Therefore, weighuser interfaces. Moreover, to produce these large,
issues for the X-33 are not as critical as for the full scaleitegrated applications in a reasonable time and cost
SSTO (Single Stage To Orbit) vehicle, the Venture Starequires collaborative engineering effort, involving many

Consequently, CFD calculations for X-33 can becompanies. We now discuss the features of a computer
minimized, concentrating on TPS (Thermal Protectiotanguage that should alleviate some of these problems.

System) design. and the aerospike propqlsion uni key component in reaching these objectives is a
However, even with the successful demonstration of X-3 rogramming language reflecting the design process, i.e.

there is no guarqntee that.Venture Star will be a success Hlat allows for the creation of objects that are stand-alone,
spacecraft. Design margins have to be cut to the ba

e : .  P3ffdicated to a single task and can be replaced without
minimum in order to rgach LEO with an adVert'SGdaffecting the rest of the code. The Java programming
payload of some 25 metric tons. language can be used for this kind of problem, on any
Here, in our opinion, CFD will have a crucial role tokind of sequential or parallel architecture, and providing
optimize a given configuration with regard toindependence of the underlying operating system (OS): It
aerodynamic stability and heat load. Many computer runsan express the mathematical formulas of Fortran,
have to be performed for the Venture Star configuratiorimprove on the functionality of C, provide the high-level
necessitating the handling of very complex gridsobject oriented” abstractions of Smalltalk, and Java
requiring short turn around times from CAD to visualizedavoids the obscurity of the C++ language. The error prone
flow solution. In order to reduce computing time, paralletoncept of pointers to pointers to pointers is not present,
computer architectures have to be used. In the past, muahd Java has an effective dynamic memory management.
emphasis has been given to the issue of computing time.

However, the focus should be on turn around time, that is, .
taking human interaction out of the loop, starting with th(j--3 Java TeChn0|Og|eS

CAD data, generating the grid, producing a CFD solutiongzor our objectives, we need certain software technologies,
visualizing the flow solution, and finally attaining thesome of which may not be well-known in the aerospace

modified CAD data. community. Java seems to be the only programming
framework that provides all of them: the list below
1.2 “Have Java” Objectives summarizes some of the terminology:

So far, software for computational aerodynamics has begn . . .
written mainly in Fortrag, and in recentyyears the morj"3'1 Object-Oriented Programming

advanced C programming language has been employethe of the most important factors is the construction of
for visualization tasks. Unfortunately these proceduratlasses and objects. A class is a template, or blueprint for
languages force the programmer to think like a computesn object: thus there may be many objects of a given class.
breaking the problem down into a set of basic data typeg. class is the combination of data structures, methods
Object-oriented languages, on the other hand, allofunctions in Fortran and C) that perform operations on
programmers not only to think more efficiently, but also tahe data structures and fields (variables in Fortran and C),
collaborate more effectively with others. Aerospacend the fields (variables) of this class. Objects provide
engineers are dealing with components like winginheritance given an object ‘Engine’, for example, with
fuselage, nacelle, pylon, engine etc. These componenisrtain properties and methods, we can define a new class
and their properties are difficult to represent in a languaggetEngine’ that inherits from Engine (after all, a Jet
like Fortran that only knows integers and reals. This igngine is a type of Engine). All the properties and
definitely not the way designers think as they conceivinethods for Engine work just as well for JetEngine,
new aircraft or spacecratt. though some may be implemented differently. Another

With the increasing size of aerodynamic codes, robustne¥&iable property of objects imformation-hiding the

and security of the software has become an issue. TR@MPIEXity of an object may be only exposed through a
recent loss of Ariane 5, flight 501, was attributed to &MPle interface, so that the object is easy to use and
programming snag, based on a lack of code security, or, Wderstand. A wristwatch is like this -- it _has a complex

OOP terminology, the lack ofencapsulation i.e. internal structure, but the display of the time is a simple

preventing other parts of the code to arbitrarily setting"t€rface.

values of variables that should be outside their range.

Some of the problems that are inherent in Fortran and tola3.2 Robustness
somewhat lesser degree in C, are: high software cost, IQWevitany,
software  productivity, insecure code, reduceq
maintainability, low reusability, poor portability, lack of

things sometimes go wrong during the flow
imulation: files missing, bad grid cells, arithmetic errors,
unphysical values, dropped network connections, etc. etc.
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Java has a rigorous way to classify and handle sugirocessors: a threaded application is said to sk#-
exceptions, coercing the programmer to think about theseheduling Java also provides a mechanism for
things while writing the code. synchronizing threads and for sending messages between
threads. Furthermore we no longer need message-passing
I libraries such as MPI and PVM to communicate between
1.3.3 Concurrent, distributed, parallel threads, but we can use shared memory or RMI (Remote
Connecting Java objects across disparate machines diéthod Invocation) instead.
networks or running Java code on sequential or parallel
architectures is essential to provide the raw computinE
power needed in the analysis as well as in the design’
cycles for new air- or spacecraft. Location and type obynamic linking is the ability for a program to link to
computer hardware as well as operating system issuesternal code at runtime. For example, suppose we have a
should be totally irrelevant to the user, and he should neet of linear equation solvers: Gaussian elimination,
be even aware of the kind of architecture being used &MRES, Multigrid, LU-decomposition, etc.
long as the necessary computing power is provided.  Traditionally, all of these are linked into one executable
file; whereas dynamic linking allows a new solver to be
- linked at runtime. Besides reducing code size, this feature
1.3.4 Portability allows software components to be replaced and
Most languages are compiled directly to the machine codvaintained without relinking the entire code.
of the machine on which they are to run, meaning that
there can be many versions of the executable, one for e .
machine. The addition of software and compiler versiorfilgl'ﬂ'e"8 Remote Method Invocation
to this can make distribution quite difficult. The Javawith a distributed computing system, for example an
compiler, on the other hand, generates a neutral file formahgineer at a workstation running a supercomputer
(extension .class), so calléyte codefrom the Java code simulation, the engineer would like to see the computation
(extension .java) that is executable on any machine thatst as if it were happening on the workstation. Java RMI
provides the Java Virtual Machine software, which iss one way to do this: the engineer (client) manipulates
practically universally available, translating the bytecodebjects with a user interface, but the actions he performs
in native machine code. (the method invocations are actually performed on
objects on the supercomputer (the server). This
. . transparent distribution of the computation and steering
1.3.5 Leveraging Business Investment are vital if we are to provide both the immediacy of a
Programs written in Java can take advantage of the hug@rkstation code with the computational power of the
investment in the language by the commercial world. lisupercomputer.
particular, there are high-quality, free security packages
available to provide authentication and encryption
services across a distributed network. We can us@ |mp|ementati0n of the Java

commercial Java-based collaboration tools to aIIovF ” |N . S k S |
geographically-distributed groups of engineers to wor aralle avier-Stokes Solver

together. We can use web technology to allow engineers

run simulations on the supercomputer without the arcar‘ﬁ%arNSSS based on the idea of collaborating objects that
knowledge of the system that is currently necessary. can be located across the N?t' Thr'oug.h the .GUI layer,
located on the client, the engineer fills in the input data

like freestream values, the names of the geometry data
1.3.6 Multithreading files, the grid topology etc. The client object sends a

In Java, concurrency is achieved via the thread concepr)?.estshaeges\enriear s:sz:i iﬂiﬁftﬁmffg\,tvhisr%%ﬁg:ﬁ;e O‘P%eea

: ) . 0
The thread concept is best explained by a simple exampfglécl')amputed solution, or part of it, is sent back to the server

3.7 Dynamic linking

consider a TV-screen that posts several channels at t . . )
i : 0 be processed locally. During the computation the client
same time, each shown in a separate small rectangular. )
! . IS informed about the computational progress. The GUI
window. Although these windows (threads) are . . !
. : contains a monitor and property editor that allows to
independent, they are part of the main screen (process : .
. Stispend the computation on the server, i.e. to stop all
i.e. they share the same address space. Threads are Tun

. pjocessors on the server, send new parameter values to the
concurrently, the mapping of threads to processors as well ; ) S
Server that forwards the information to all participating

as the scheduling being done by Java and the OS. Thus wé

. : rocessors and resumes the computation. As will be
have a way to get dynamic load-balancing of a parall ; . . . - o
L , ey i escribed in the following sections, this is not a trivial
application without explicitly assigning tasks to

process, but Java provides the model that enables
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interobject communication, and allows the generation cferver in a transparent way; a layer for scheduling and
distributed objects on a multi-processor machine. synchronization of the parallel threads; and then the solver

Parallelization is based on the concept of muItithreadin@,bJeCtS’. each Of. which is resp0n5|b!e for n.umencal
that is, withinJParNSSit appears that multiple tasks are alculation on a single block of the multiblock grid.
performed at the same time. Each task corresponds tdrathis paper we will concentrate on the RMI and parallel
thread in Java. The solution domain comprises a set td#yers, because these concepts are somewhat alien to the
blocks and each block is iterated within a thread. When amon  Java programmer. We have not completely
iteration has been performed, threads (blocks) exchangaplemented the multiblock flow solver; instead the
information with neighboring threads to update theiiobjective has been to investigate Java and threading as a
boundaries. This involves some kind of a synchronizatiohighly flexible, but also efficient, way to express a flow
operation for the threads. The parallelization strategy isolver.

discussed in [7].

The code comprises four layers: the GUI layer, a® 1 Remote Objects: Client and Server
explained above; the Remote Method Invocation (RMI)

that connects the client-side GUI to the high-performance

Figure 1: A multiblock grid for the X-33 vehicle. Each block is run in its own thread. Grids may have
thousands of blocks, and thus the OS has to create the corresponding number of threads and is also
responsible for starting and stopping all threads.

The input data needed to rudfParNSSs collected on the needed which of the methods should be local and which
client and sent across the Net to a server that processes lfaee to be remote.

computational request and starts the parallel code. T
server is also responsible for sending back the specifi%
information to the client. The first question to be
discussed is how to establish the connection betwe
client and server.

nce we want to send more than just a raw byte stream, a
cket connection is not useful. We are using Java’'s
implementation of remote objects that provides the
?Jr?otocol and takes care of all the encoding and decoding:
we can invoke remote methods on the server from the
A logical distinction has to be made between the code thatient, asking the remote method to return an object to the
resides on the client and code that is on the server. blient. For remote method invocation (RMI) the client
addition, the common classes that reside on both clientachine calls a remote method of an object located on the
and server have to be identified. Furthermore, a decisiongerver.
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The JParNSScode comprises the moduleé3lient and
Server as illustrated in Figure 1. The programming on the

RMI Client RMI Server

'/ \‘
irtua Rea
Object network— - Object

stub L A " skeleton
methods 4= = ™= methods

method
implementation

Figure 2. Client-Server communication through Java RMI (Remote Method Invocation). Each shared
object has an interface, common to client and server sides, that defines what methods are available. The
client can invoke methods on the object, but these are executed on the server where the object actually
resides.

client side can manipulate and display objects as if thegkeleton objectThe skeleton object resides on the server.
were local, allowing interactive steering of the code as it decodes the parameters, callecharameter
runs, and displays showing the progress of the simulationnmarshalling and sends back the return value of the
But in fact, the object is stored on another machine, theemote method to the stub, in marshalled form.

high-performance server that is running the simulation. Tﬂ’l order to runJParNSSts client and server modules have

make this effective, it is important that client and SeIVe[, pe set up. It should be noted that client and server may

agree or;)what me:)hotﬂs may tt;]e quke;gfon thf?l objzct; thﬂ)% on the same machine. In other words, the proper Java
occurs because both see the sameriace Me. AN - qqqeg must be running on both client and server. In order

ln'terface, in Java, is simply a listing of what .methOdeor client and server to communicate, the TCP/IP protocol
with what arguments and return values, can be invoked ust be enabled. even on a single machine

the objects of that class; i.e. the name of the class along

with the signature(name and parameters) of the method§inally, we come to the question of how an RMI session is
is specified, but none of the methods is actuallynitiated. In order to allow remote method invocation, the
implemented, which is left to the server code. Eaclerver must be running a demon process called
interface for a remote object extends fRemotdnterface miregistry , thatis listening for requests from clients.
of thejava.rmipackage. Each method in such an interfac# addition, a process must be running on the server that
throws aRemoteExceptiorthat is an error condition is registers certain objects with the registry by means of a
generated in case the remote call fails, for instancéextstring. In the case of JParNSS, a single object of class
because the network is down etc. This exception (errofpMaster is registered (see Figure 2).

has to be caught by all methods and appropriate action hgghen a client request arrives, it contains a string that
to be taken. identifies the object that the client is requesting; if this
When the client process invokes a method on some obje&tling is in the registry, then the corresponding object is
the Java System encodes the method name and r,ggurned to the client. As explained above, it is not the
arguments into a byte-stream, and transfers the requestc@mplete object that is returned, but only a reference to
the server, where it is decoded and actually executed. TH object; but the client sees no distinction between
communication between client and server is realized bfgmote and local objects.

the concept of stub and skeleton. Because the

communication process is complex, the meaning of st C _
and skeleton objects is explicitly outlined below. Uﬁ'z DIS.tI’IbUted and Shared Memory
Parallelism

Stub object The stub object resides on the client. When

the client invokes a remote method on a remote object dn the distributed memorymodel, parallel computation
the server, the stub provides the device independeimvolved dividing the computation between the processors
encoding for the parameters to be sent, a process callefl the parallel machine. Each processor has its own
parameter marshalling The stub also unmarshals thememory, and information is exchanged through messages.
return value received form the skeleton code. If each processor has a predictable, static workload, such
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load-balancing is relatively easy, and can be done befopgocess decides which thread can run when. To prevent
runtime. In a more complex, dynamic situation, itaccess of two or more threads to the same variable at the
becomes much more difficult. Modern flow solvers, suclsame time Java provides an object lock mechanism using
as ParNSS, switch on and off physical and chemicdhesynchronizedey word.

models, solution algorithms, and grid complexity as the

shock moves through the domain. In this case, complex

dynamic load-balancing algorithms [19] are needed @ Parallel Structure of the
move computational load from processor to processor.
P P P JParNSSCode

Now, however, another approach is becoming viable: the

parallel processors run a multithreaded program, thgyig. 4 shows the structure of the JParNSS code. A client
share memory, and the machinesilf-schedulingEach

thread of control is queued for execution, and a manager
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Figure 3. Every solver object contains the data of and the numerics for one block.The solver class is sent
from the client to the server that is, different users may use different solvers.

process connects to the RMI registry on the server, arddaster object can create a new Session by invoking the
uses the string “JpMaster” to get an object of classewJpSession method; this is of course executed on the
JpMaster . This object is used to generate multipleremote server because its parent object is remote:
sessions, so that seyeral clients can be using the system atmpMaster - (JpMaster)Nam-
the same time for independent computations. The code ing.lookup(“rmi://servername/JpMaster”);
can be used by several users at the same time. The mpSessionld = mpMaster.newJpSession();
JpMaster has aew method that creates a new session and o .

. . .. mpSession = mpMaster.getJpSession(
returns an integer sessionlID. This integer can be used to mpSessionid );

get ordestroy an old session. ) _ N _
) ] ] _In this code fragment, note that in addition to the Session
The session object now creates a multithreaded collectl%ject itself, the Master provides an integgssionld

of Node objects, which handle synchronization aspects ofyjs is done so that the client can detach itself from the
the computation; each node is dynamically linked 10 @grer and close down, then at a later time, use the
Solver  object, which handles the numerics. Sessionld  to reattach to the Session, possibly from a
The remote Master object is obtained by looking up on thdifferent machine, in order to check on the status of the
RMI registry on a machine (here called “servername”)iunning computation.

asking for an object whose name is “JpMaster”). The
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RMI over network RMI

- registr
/‘ - - I O g y
* 0O
/ .

J Single object Multiple sessions
in RMI registry for different users

]

Client GUI

Each Session controls
multiple Node threads

Each Node has a
dynamically-linked
Solver

Figure 4. The client controls remote objects by invoking methods on them. There is only one registered

RMI object, the Master, which can spawn Sessions so that multiple users can work. Each Sessiop can
spawn a number of Node threads, each of which can dynamically load a Solver, which is responsible for
computation in a single block of the grid.

Once the Session object is created, it is initialized and isolver: it exchanges data with the solvers that surround it,
execution begins, meaning that it spawns a number ahd computes the new solution for the next iteration.
Node threads, each of which executes a Solver:
public class JpSessionimp extends Uni- 3.1 Communication between blocks
castRemoteObject implements JpSession {
private JpNodelmp nodeArrayf[];
private JpSolver solverArray[];

Essentially, each block of the computation is alternating
between computation and data exchange. The compute
o o phase consists of computing fluxes at cell boundaries,
public void initSession(int number- then adding (subtracting) the incoming (outgoing) flux

OfNodes, ... > . .
) from the values of the primitive variables in each cell.
nodeArray = new JpNodelmp[num-

berOfNodes];
solverArray = new 3.2 Running JParNSS

JpSolver[numberOfNodes]; .
P [ ) In order to set up théParNSSode on both the client and

the server, the following stages are needed.

} 1. [Server: compile server program§ Compile (javac)
the java files (extension .java) of the server module on
The code above is a small part of the process of creating the server.
the array of solver threads. Once the arrays of nodes a
solvers are created, each is initialized, and each is start
The initialization of a node includes setting up
connections to its neighbors, initalizing the data array, an8l [Server: generate stub and skeleton codes using
setting up boundary conditions. When all the node threads rmic compiler] Generate the stub (client) and skele-
are ready to run their solvers, computation begins. The ton (server) code by running the rmi compilenic)
solver object then does what we expect in a parallel on the server and copy the stub code to the client. The

d . L . .
[Client: compile client programs] Compile the java
“files on the client.
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writing to face buffer reading from face buffer

Node i, Face 1
Node i, Face 2
Node i, Face 3
Node i Node i, Face 4 Node j

ready

copy

Node j, Face 1

Node j, Face 2

Node j, Face 3

Node j, Face 4
[ J

Node N, Face 4

Figure 5. Communication between blocks. Each block copies the first layer of internal points into the face

buffer, and the flag is set to “ready” for that face, meaning that the neighbor block can read it. The neighbor
reads from the buffer into its halo layer. The word “Transform” refers to the difficult problem (in 3D) pf
mapping the face array to one face of the block, or other protocol translation from block to block.

stub code contains the signatures of the remote methn a many-to-one implementation — also referred to as
ods and provides the necessary information for the cliuser-level threads” — all thread activity is restricted to
ent code. user space. Additionally, at any given time, only one
[Server: registry setup] Start theregistryto enlist all thrtgfld_ csn acc;anhthe ker?el, S0 tonly :ne SChﬁ?utls.ble
remote objects on the server. A server object is regisEan Ity 1S known 1o the operating system. AS a resuit, this

tered by giving a reference and a name (unique Strindgmltithreading _mode.l provides limited concurrency and
to theregistry.On the client thé&aming.lookup() oes not exploit multiprocessors.
method of the stub code accesses the remote object dm the “one-to-one” thread model, the main problem is

the server by giving the server nameJiRL format, that it places a restriction on the developer to be careful
combined with the name of the server object, as hasand frugal with threads, as each additional thread adds
been registered in thegistry more “weight” to the process. Consequently, many

implementations of the one-to-one model, such as
Windows NT and the OS/2® threads package, limit the
number of threads supported on the system. (i.e. 1024
threads on Windows NT)
[Client: remote object lookup] Start a program that . .,

In the “many-to-many” model, a program can have as

looks up the registered remote server objects. The thread it ithout King th
JpClientcan then manipulate these remote objects b)ynany reads as are appropriate without making the

invoking methods, and create new remote objects. process too h(_eavy or bu.rdensome'. I.n this model, a user-
level threads library provides sophisticated scheduling of

[Server: object registration (binding)] Start the
code that registerdipding) all objects of class imple-
mentation on the server, i.e. th@Mastemprocess.

The interfaces, that are seen by both client and server, ajger-level threads above kernel threads. The kernel needs
stored in directoryShare. Client, Serverand Shareare  to manage only the threads that are currently active. A
subdirectories of directoryParNSSx:ontaining the make many-to-many imp|ementation at the user level reduces
file, the documentation etc. programming effort as it lifts restrictions on the number of

threads that can be effectively used in an application.

. A many-to-many multithreading implementation thus
4. Implementatlon of Threads by provides a standard interface, a simpler programming

the Operating System) model, and provides optimal performance for each
process. The Java virtual machine with the Solaris

There are three basic models of thread implementationgperating environment is the first many-to-many

“many-to-one”,

one-to-one”, and “many-to-many”.
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Java Application

4 - Thread 4 % J %

User Space

Native

Figure 6. The many-to-many model (many user-level threads to many kernel-level threads) avoids many of
the limitations of the one-to-one model, while extending multithreading capabilities even further. The many-
to-many model, also referred to as the two-level model, minimizes programming effort while reducing the
cost and weight of each thread.

commercial implementation of Java on a multithreadedffered by [3]. Neither was there an attempt to replace

osS. RMI by a faster communication module such as [18]. The
design of JParNSS strictly follows Kernighan's rule
‘Make it right before you make it fasten reference [1]

5. Computational Results speeds between 80% and 90% of corresponding Fortran
programs were obtained and a compiler will be available

At present the solver class is implemented for 2D and fg¥oon.

Cartesian coordinate systems. In addition, the fulhs 5 test case, we have chosen to compute an Euler flow

multiblock layer has not been implemented. No attempi§ast a forward-facing step at Mach 3. The resulting mach-
were made to reduce the computing time, using fakymper field is shown in Fig. 7.

example the IBM Java compiler [1], [2] or the software

M N
\\

M“”\ \\\‘n

Figure 7. Euler flow past a forward-facing step at Mach 3. All computations are explicit and first order
accurate. Shown is the Mach-number distribution.

5.1 Computing Times for In Table 1 computing times for various processors are
Monoprocessors

Table 1. JParNSS computing times for various monoprocessors

Number Number Computing | Memory JDK
Architecture of blocks | of cells time [s] [MB] version

PentiPentium 1l 300 38 12000 331 256 1.1.6
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Table 1. JParNSS computing times for various monoprocessors

AMD K6-2 300 MHz 38 12000 1045 64 11.7

Sun Ultra 10 38 12000 358 512 113
Sun E450 38 12000 237 2000 1.16
SGI R8000 38 12000 2678 3000 1.1.6
PentiPentium 11 300 148 12000 355 256 1.1.6
AMD K6-2 300 MHz 148 12000 1104 64 1.1.7

Sun Ultra 10 148 12000 354 512 1.1.3
Sun E450 148 12000 275 2000 1.1.6
SGI R8000 148 12000 2753 3000 116

given. As far as possible, the same version of JDK wa§ 2 Computing Times for

used. Multiprocessors
In Table 2 JParNSS is run on a variety of architectures.
Table 2. JparNSS computing times for multiprocessor architectures
Number of Number Number Computing | Memory | JDK
processors | Architecture of blocks | of cells time [s] [MB] version
2 Pentium 11 300 MHz 3 48000 1273 256 1.1.6
2 Sun Ultra 60 3 48000 787 512 1.2betg5
2 Sun E450 3 48000 1015 2000 1.1.6
3 Sun E450 3 48000 963 2000 1.1.6
4 Sun E450 3 48000 1044 2000 1.1.6
2 Pentium 11 300 MHz 10 48000 708 256 1.1.6
2 Sun Ultra 60 10 48000 475 1100 1.2betab
2 Sun E450 10 48000 563 2000 1.1.6
3 Sun E450 10 48000 472 2000 1.1.6
4 Sun E450 10 48000 455 2000 1.1.6
2 Pentium 11 300 MHz 38 48000 658 256 1.1.6
2 Sun Ultra 60 38 48000 417 1100 1.2betab
2 Sun E450 38 48000 514 2000 1.1.6
3 Sun E450 38 48000 349 2000 1.1.6
4 Sun E450 38 48000 261 2000 1.1.6
2 Pentium 11 300 MHz 148 48000 640 256 1.1.6
2 Sun Ultra 60 148 48000 421 1100 1.2betab
2 Sun E450 148 48000 529 2000 1.1.6
3 Sun E450 148 48000 343 2000 1.1.6
4 Sun E450 148 48000 260 2000 1.1.6
2 Pentium Il 300 MHz 38 192000 n.a. 256 1.1.6
2 Sun Ultra 60 38 192000 2926 1100 1.2betab
2 Sun E450 38 192000 n.a. 2000 1.1.6
3 Sun E450 38 192000 n.a. 2000 1.1.6
4 Sun E450 38 192000 n.a. 2000 1.1.6
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Table 2. JparNSS computing times for multiprocessor architectures

Number of Number Number | Computing | Memory | JDK
processors | Architecture of blocks | of cells time [s] [MB] version
2 Pentium 11 300 MHz 148 192000 n.a. 256 1.1.6
2 Sun Ultra 60 148 192000 283342 1100 1.2betp5
2 Sun E450 148 192000 n.a. 2000 1.1.6
3 Sun E450 148 192000 n.a. 2000 1.1.6
4 Sun E450 148 192000 n.a. 2000 1.1.6

with different numbers of processors. In all runs thewumber of processors is substantially smaller than the
number of threads equals the number of processors. Tmamber of blocks. As can be seen from Table 2, the
corresponds to the fact that a grid with several thousamtesent paper is restricted to architectures with a small
blocks has to be run on multiprocessor system whosaimber of processors. In Fig. 8 is shown the compute

1100 = Simulation of forward facing step on
T Sun Enterprise 450, UltraSPARC Il 300 MHz,
-~ 3 blocks 2 GB Memory, Solaris 2.6
1000 ||
o 192,000 cells in 38 blocks (38 native threads)
900 |
o - ——E}—— jdk1.1.6 production release
_g 800 |
S -
D N
wn B
= 700 I~
o -
£ -
= 600 |-
@ =
= -
o .
g 500 |~
S - [0 10 blocks
400 |- ™~
300 |- . 38 blocks 148 blocks
= = =
| 1 1 ]
2005 50 100 150
number of blocks
Figure 8. Run time for JParNSS on the 4-processor Sun 450 vs. number of blocks used for the
computation. Full computational load for 4 processors is achieved with 38 threads (blocks).

times as the number of blocks of the multiblock grid isbe used to create a fluid solver. In this paper, we have
varied. Here the number of active threads is the same akown the component that is responsible for parallelism,
the number of blocks. As blocks are split, we have morand also the remote-invocation layer, which allows a
threads than processors, so that each processor has enawghote client to initiate and steer a computation on a
work to do: the computational efficiency increasesupercomputer.

_because trlle Ioad—bilalmce betweben t?il fOEr pr)]rocess%sthe component model, different parts of the code can be
IMProves. For a much larger number ot DIOCks, 0V"evelrjeveloped separately. In this conteedmponenimplies a

the trt]r(:_ad Ioverrllead b.(ec{‘O(Tes_thIatrr?er blthin tI;fell—defined interface with other components, so that
c?fm_pumgna work associated wi € Dblock, an omponents can be easily exchanged, upgraded, or
efmciency arops. worked-on by different parts of a collaboration.

The next component that we shall create in this program is

6. Conclusions and Future Work a multiblock component, allowing complex geometries
) and topologies to be handled. The computational domain

This prototype implementation of a multiblock solveriS divided logically into a set of boxes, each with its own

represents a first stage in the “Have Java’ project. We haleal coordinate.system. The boxes are then connected
shown how a flexible, component-based architecture cdfirough the multiblock component.
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Figure 9. Processor utilization for the 4-processor Sun E450 running JParnss. This screenshot is obtaingd from
the Solaris tooproctool The bars from left to right denote CPU numbers 0 to 3, the rightmost bar shows the

average load of the CPUs. It is important that the thread scheduler generates a full computational load| for all
processors. If the number of threads is too small or threads of highly different compautational load havé been
produced, parallel efficiency is reduced.

Simulation of forward facing step on
1000 |~ Sun Enterprise 450, UltraSPARC Il 300 MHz, 2 GB Memory, Solaris 2.6
E 48,000 cells in 38 blocks (38 native threads)
900 |-
B ——[}—— jdk1.2 devO5 production beta release
8 800|:7 —A—— jdk1.1.6 production release
S [
S [~
% =
= 700 |-
<] B
E B
@ 600 |~
5 [~
= - 75% efficiency
o 500 -
S u /
400 |-
300 [~
o ] ]
1 2 3
number of processors

Figure 10. Run time for JParNSS on the 4-processor Sun 450 vs. number of processors. The 38 block grid
comprising 48,000 cells was used for the simulations. The figure shows a substantial speedup for the 1 and 2
processor configurations for JDK1.2 over JDK1.1.6. However, when 3 and 4 procesors are used, JDK 1.2 does not
scale properly and parallel efficiency is lost.

We have provided a framework for a solver that is cast ioomponent of the system is the expression of the
the form of general conservation laws. Anotherconservation system that is being solved.
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