
AIAA 99-0549

A Pure Java Parallel Flow Solver

Jochem Häuser, Thorsten Ludewig
Torsten Gollnick, Ralf Winkelmann

Department of Transportation, University of Applied Sciences
and

Department of High Performance Computing, CLE GmbH, Germany

Roy Williams
CACR, California Institute of Technology, Pasadena, CA

Jean Muylaert, Martin Spel
European Space Agency, ESTEC, Noordwijk, NL

X-33 Computation performed by the ParNSS code

37th Aerospace Sciences Meeting and Exhibit

January 11-14, 1999, Reno, NV

ith
as
re
r

ly
an

],
e,
n

to
in
or,
.g.
r.
2.0

P
of
In
s

ng
a

h
he
cal
ly
n
d

ing
ws

e
at
d to
ds,
ns
for
the

ign.
s
e
e

by
or
or
Abstract1

In this paper an overview is given of the “Have Java”2

project to attain a pure Java parallel Navier-Stokes flow
solver (JParNSS) based on the thread concept and remote
method invocation (RMI). The goal of this project is to
produce an industrial flow solver running on an arbitrary
sequential or parallel architecture, utilizing the Internet,
capable of handling the most complex 3D geometries as
well as flow physics, and also linking to codes in other
areas such as aeroelasticity etc.

Since Java is completely object oriented the code has been
written in an object-oriented programming (OOP) style.
The code also includes a graphics user interface (GUI) as
well as an interactive steering package for the parallel
architecture. The Java OOP approach provides profoundly
improved software productivity, robustness, and security
as well as reusability and maintainability. OOP allows
code construction similar to the aerodynamic design
process because objects can be software coded and
integrated, reflecting actual design procedures. In
addition, Java is the programming language of the Internet
and thus Java objects on disparate machines or even
separate networks can be connected.

We explain the motivation for the design ofJParNSS
along with its capabilities that set it apart from other
solvers. In the first two sections we present a discussion of
the Java language as the programming tool for aerospace
applications. In section three the objectives of the Have
Java project are presented. In the next section the layer
structures ofJParNSSare discussed with emphasis on the
parallelization and client-server (RMI) layers.JParNSS,
like its predecessorParNSS(ANSI-C), is based on the
multiblock idea, and allows for arbitrarily complex
topologies. Grids are accepted inGridPro or Plot3D
format. UsingGridPro property settings, grids of any size
or block number can be directly read byJParNSSwithout
any further modifications, requiring no additional
preparation time for the solver input. In the last section,
computational results are presented, with emphasis on
multiprocessor Pentium and Sun parallel systems run by
the Solaris operating system (OS).

1. Java as a Programming Tool in
Engineering
Java, introduced in late 1995, was an instant success w
the Internet programming community. However, Java w
not considered to be a suitable language for softwa
engineering in aerospace, and in particular fo
computational fluid dynamics (CFD). The reason simp
was that Java was lacking performance, because it was
interpreted language.

Recently, however, work at IBM and elsewhere [1], [2
[3] has shown that Java can provide high performanc
through careful relaxation of Java’s careful exceptio
handling and transformations of the bytecode. .

In early 1997, JavaSoft [4] released a major upgrade
Java, called Java 1.1, that proved to be far superior
overall performance and speed than its predecess
because of the introduction of advanced concepts (e
event handling) as well as the JIT (Just In Time) compile
In the meantime, Java 1.2 has been released, and Java
is expected for early 1999. Java 1.1 is a powerful OO
programming language that addresses every kind
programming the (aerospace) engineer might need.
addition, in 1997 the Java Workshop version 2.0 wa
released by Sun Microsystems, one of an increasi
number of Java development environments providing
cross platform development environment along wit
debugging tools, editor and project management. T
major advantage is, however, that an interactive graphi
GUI (graphics user interface) is included that great
alleviates the tedious task of explicitly coding such a
interface. The user graphical input is directly converte
into Java code that can be combined with the engineer
Java code. Furthermore, Java WorkShop also allo
creation of Internet applications and web pages.

We believe that Java will profoundly change softwar
development in the engineering area, provided th
engineers are able to tap the vast resources of Java an
harness advanced concepts like classes, threa
serialization, or remote method invocation. The reaso
why Java should be considered a leapfrog technology
aerospace software development are discussed in
following section.

1.1 Java for Aerospace Applications
CFD along with wind tunnel and flight testing is a
respected analysis tool in many areas of aerospace des
CFD is of particular importance for high speed flow
where wind tunnel data are difficult to obtain, or when th
impact of a single physical phenomenon has to b
investigated. Aerospace design of today is marked
diminishing margins that can make or break a design. F
instance, the X-33 vehicle, a technology demonstrator f

1. The title page shows the Ma number distribution computed
by the C-code ParNSS. The JParNSS code is currently
restricted to 2D.

2. The HavaJava project aims at a pure Java parallel 3D flow
solver and is supported by the Ministry of Science and Cul-
ture, Hannover, Lower Saxony, Germany.
2 of 14

ly
e,
st

y
ter

a
i.e.
e,
ut

ng
ny
g
: It
n,
l
a
ne
nt,
nt.

es,
e
g

of
for
ss.
ds
n

C),
e

ass
t
d
,

er

a
nd
x
le

s,
tc.
the next generation space transportation system, does not
have to reach LEO (Low Earth Orbit). Therefore, weight
issues for the X-33 are not as critical as for the full scale
SSTO (Single Stage To Orbit) vehicle, the Venture Star.
Consequently, CFD calculations for X-33 can be
minimized, concentrating on TPS (Thermal Protection
System) design and the aerospike propulsion unit.
However, even with the successful demonstration of X-33,
there is no guarantee that Venture Star will be a successful
spacecraft. Design margins have to be cut to the bare
minimum in order to reach LEO with an advertised
payload of some 25 metric tons.

Here, in our opinion, CFD will have a crucial role to
optimize a given configuration with regard to
aerodynamic stability and heat load. Many computer runs
have to be performed for the Venture Star configuration,
necessitating the handling of very complex grids,
requiring short turn around times from CAD to visualized
flow solution. In order to reduce computing time, parallel
computer architectures have to be used. In the past, much
emphasis has been given to the issue of computing time.
However, the focus should be on turn around time, that is,
taking human interaction out of the loop, starting with the
CAD data, generating the grid, producing a CFD solution,
visualizing the flow solution, and finally attaining the
modified CAD data.

1.2 “Have Java” Objectives
So far, software for computational aerodynamics has been
written mainly in Fortran, and in recent years the more
advanced C programming language has been employed
for visualization tasks. Unfortunately these procedural
languages force the programmer to think like a computer,
breaking the problem down into a set of basic data types.
Object-oriented languages, on the other hand, allow
programmers not only to think more efficiently, but also to
collaborate more effectively with others. Aerospace
engineers are dealing with components like wing,
fuselage, nacelle, pylon, engine etc. These components
and their properties are difficult to represent in a language
like Fortran that only knows integers and reals. This is
definitely not the way designers think as they conceive
new aircraft or spacecraft.

With the increasing size of aerodynamic codes, robustness
and security of the software has become an issue. The
recent loss of Ariane 5, flight 501, was attributed to a
programming snag, based on a lack of code security, or, in
OOP terminology, the lack ofencapsulation, i.e.
preventing other parts of the code to arbitrarily setting
values of variables that should be outside their range.

Some of the problems that are inherent in Fortran and to a
somewhat lesser degree in C, are: high software cost, low
software productivity, insecure code, reduced
maintainability, low reusability, poor portability, lack of

architecture independence, and clumsy and unfriend
user interfaces. Moreover, to produce these larg
integrated applications in a reasonable time and co
requires collaborative engineering effort, involving man
companies. We now discuss the features of a compu
language that should alleviate some of these problems.

A key component in reaching these objectives is
programming language reflecting the design process,
that allows for the creation of objects that are stand-alon
dedicated to a single task and can be replaced witho
affecting the rest of the code. The Java programmi
language can be used for this kind of problem, on a
kind of sequential or parallel architecture, and providin
independence of the underlying operating system (OS)
can express the mathematical formulas of Fortra
improve on the functionality of C, provide the high-leve
“object oriented” abstractions of Smalltalk, and Jav
avoids the obscurity of the C++ language. The error pro
concept of pointers to pointers to pointers is not prese
and Java has an effective dynamic memory manageme

1.3 Java Technologies
For our objectives, we need certain software technologi
some of which may not be well-known in the aerospac
community. Java seems to be the only programmin
framework that provides all of them: the list below
summarizes some of the terminology:

1.3.1 Object-Oriented Programming

One of the most important factors is the construction
classes and objects. A class is a template, or blueprint
an object: thus there may be many objects of a given cla
A class is the combination of data structures, metho
(functions in Fortran and C) that perform operations o
the data structures and fields (variables in Fortran and
and the fields (variables) of this class. Objects provid
inheritance: given an object ‘Engine’, for example, with
certain properties and methods, we can define a new cl
‘JetEngine’ that inherits from Engine (after all, a Je
engine is a type of Engine). All the properties an
methods for Engine work just as well for JetEngine
though some may be implemented differently. Anoth
valuable property of objects isinformation-hiding: the
complexity of an object may be only exposed through
simple interface, so that the object is easy to use a
understand. A wristwatch is like this -- it has a comple
internal structure, but the display of the time is a simp
interface.

1.3.2 Robustness

Inevitably, things sometimes go wrong during the flow
simulation: files missing, bad grid cells, arithmetic error
unphysical values, dropped network connections, etc. e
3 of 14

r
een
sing
n

ote

e a
n,

le
e
re
d

n
er
on

I
s
s

is
ng
a
e

at
er,
ta
ata
a

ject
e
er
nt
UI
o
all
the

g
be
l
les
Java has a rigorous way to classify and handle such
exceptions, coercing the programmer to think about these
things while writing the code.

1.3.3 Concurrent, distributed, parallel

Connecting Java objects across disparate machines and
networks or running Java code on sequential or parallel
architectures is essential to provide the raw computing
power needed in the analysis as well as in the design
cycles for new air- or spacecraft. Location and type of
computer hardware as well as operating system issues
should be totally irrelevant to the user, and he should not
be even aware of the kind of architecture being used as
long as the necessary computing power is provided.

1.3.4 Portability

Most languages are compiled directly to the machine code
of the machine on which they are to run, meaning that
there can be many versions of the executable, one for each
machine. The addition of software and compiler versions
to this can make distribution quite difficult. The Java
compiler, on the other hand, generates a neutral file format
(extension .class), so calledbyte code, from the Java code
(extension .java) that is executable on any machine that
provides the Java Virtual Machine software, which is
practically universally available, translating the bytecode
in native machine code.

1.3.5 Leveraging Business Investment

Programs written in Java can take advantage of the huge
investment in the language by the commercial world. In
particular, there are high-quality, free security packages
available to provide authentication and encryption
services across a distributed network. We can use
commercial Java-based collaboration tools to allow
geographically-distributed groups of engineers to work
together. We can use web technology to allow engineers to
run simulations on the supercomputer without the arcane
knowledge of the system that is currently necessary.

1.3.6 Multithreading

In Java, concurrency is achieved via the thread concept.
The thread concept is best explained by a simple example:
consider a TV-screen that posts several channels at the
same time, each shown in a separate small rectangular
window. Although these windows (threads) are
independent, they are part of the main screen (process),
i.e. they share the same address space. Threads are run
concurrently, the mapping of threads to processors as well
as the scheduling being done by Java and the OS. Thus we
have a way to get dynamic load-balancing of a parallel
application without explicitly assigning tasks to

processors: a threaded application is said to beself-
scheduling. Java also provides a mechanism fo
synchronizing threads and for sending messages betw
threads. Furthermore we no longer need message-pas
libraries such as MPI and PVM to communicate betwee
threads, but we can use shared memory or RMI (Rem
Method Invocation) instead.

1.3.7 Dynamic linking

Dynamic linking is the ability for a program to link to
external code at runtime. For example, suppose we hav
set of linear equation solvers: Gaussian eliminatio
GMRES, Multigrid, LU-decomposition, etc.
Traditionally, all of these are linked into one executab
file; whereas dynamic linking allows a new solver to b
linked at runtime. Besides reducing code size, this featu
allows software components to be replaced an
maintained without relinking the entire code.

1.3.8 Remote Method Invocation

With a distributed computing system, for example a
engineer at a workstation running a supercomput
simulation, the engineer would like to see the computati
just as if it were happening on the workstation. Java RM
is one way to do this: the engineer (client) manipulate
objects with a user interface, but the actions he perform
(the method invocations) are actually performed on
objects on the supercomputer (the server). Th
transparent distribution of the computation and steeri
are vital if we are to provide both the immediacy of
workstation code with the computational power of th
supercomputer.

2. Implementation of the Java
Parallel Navier-Stokes Solver
JParNSSis based on the idea of collaborating objects th
can be located across the Net. Through the GUI lay
located on the client, the engineer fills in the input da
like freestream values, the names of the geometry d
files, the grid topology etc. The client object sends
message via a standard protocol to the appropriate ob
on the server that starts the flow computation. Th
computed solution, or part of it, is sent back to the serv
to be processed locally. During the computation the clie
is informed about the computational progress. The G
contains a monitor and property editor that allows t
suspend the computation on the server, i.e. to stop
processors on the server, send new parameter values to
server that forwards the information to all participatin
processors and resumes the computation. As will
described in the following sections, this is not a trivia
process, but Java provides the model that enab
4 of 14

nd
er

al

l
the

ly
e
s a

ch

, a
’s
e
g:

he
he
t
the

so
interobject communication, and allows the generation of
distributed objects on a multi-processor machine.

Parallelization is based on the concept of multithreading,
that is, withinJParNSSit appears that multiple tasks are
performed at the same time. Each task corresponds to a
thread in Java. The solution domain comprises a set of
blocks and each block is iterated within a thread. When an
iteration has been performed, threads (blocks) exchange
information with neighboring threads to update their
boundaries. This involves some kind of a synchronization
operation for the threads. The parallelization strategy is
discussed in [7].

The code comprises four layers: the GUI layer, as
explained above; the Remote Method Invocation (RMI)
that connects the client-side GUI to the high-performance

server in a transparent way; a layer for scheduling a
synchronization of the parallel threads; and then the solv
objects, each of which is responsible for numeric
calculation on a single block of the multiblock grid.

In this paper we will concentrate on the RMI and paralle
layers, because these concepts are somewhat alien to
non Java programmer. We have not complete
implemented the multiblock flow solver; instead th
objective has been to investigate Java and threading a
highly flexible, but also efficient, way to express a flow
solver.

2.1 Remote Objects: Client and Server

The input data needed to runJParNSSis collected on the
client and sent across the Net to a server that processes the
computational request and starts the parallel code. The
server is also responsible for sending back the specified
information to the client. The first question to be
discussed is how to establish the connection between
client and server.

A logical distinction has to be made between the code that
resides on the client and code that is on the server. In
addition, the common classes that reside on both client
and server have to be identified. Furthermore, a decision is

needed which of the methods should be local and whi
have to be remote.

Since we want to send more than just a raw byte stream
socket connection is not useful. We are using Java
implementation of remote objects that provides th
protocol and takes care of all the encoding and decodin
we can invoke remote methods on the server from t
client, asking the remote method to return an object to t
client. For remote method invocation (RMI) the clien
machine calls a remote method of an object located on
server.

Figure 1: A multiblock grid for the X-33 vehicle. Each block is run in its own thread. Grids may have
thousands of blocks, and thus the OS has to create the corresponding number of threads and is al
responsible for starting and stopping all threads.
5 of 14

r.

e

ay
ava
er
ol

is
e
ed
.
at
a
ss

at
is
is
e
to
n

rs
n

es.
ch

e
ly
The JParNSScode comprises the modulesClient and
Server, as illustrated in Figure 1. The programming on the

client side can manipulate and display objects as if they
were local, allowing interactive steering of the code as it
runs, and displays showing the progress of the simulation.
But in fact, the object is stored on another machine, the
high-performance server that is running the simulation. To
make this effective, it is important that client and server
agree on what methods may be invoked on the object; this
occurs because both see the sameinterface file. An
interface, in Java, is simply a listing of what methods,
with what arguments and return values, can be invoked on
the objects of that class; i.e. the name of the class along
with thesignature(name and parameters) of the methods
is specified, but none of the methods is actually
implemented, which is left to the server code. Each
interface for a remote object extends theRemoteinterface
of the java.rmipackage. Each method in such an interface
throws aRemoteException,that is an error condition is
generated in case the remote call fails, for instance,
because the network is down etc. This exception (error)
has to be caught by all methods and appropriate action has
to be taken.

When the client process invokes a method on some object,
the Java system encodes the method name and its
arguments into a byte-stream, and transfers the request to
the server, where it is decoded and actually executed. The
communication between client and server is realized by
the concept of stub and skeleton. Because the
communication process is complex, the meaning of stub
and skeleton objects is explicitly outlined below.

Stub object: The stub object resides on the client. When
the client invokes a remote method on a remote object on
the server, the stub provides the device independent
encoding for the parameters to be sent, a process called
parameter marshalling. The stub also unmarshals the
return value received form the skeleton code.

Skeleton object:The skeleton object resides on the serve
It decodes the parameters, calledparameter
unmarshalling, and sends back the return value of th
remote method to the stub, in marshalled form.

In order to runJParNSSits client and server modules have
to be set up. It should be noted that client and server m
be on the same machine. In other words, the proper J
codes must be running on both client and server. In ord
for client and server to communicate, the TCP/IP protoc
must be enabled, even on a single machine.

Finally, we come to the question of how an RMI session
initiated. In order to allow remote method invocation, th
server must be running a demon process call
rmiregistry , that is listening for requests from clients
In addition, a process must be running on the server th
registers certain objects with the registry by means of
text string. In the case of JParNSS, a single object of cla
JpMaster is registered (see Figure 2).

When a client request arrives, it contains a string th
identifies the object that the client is requesting; if th
string is in the registry, then the corresponding object
returned to the client. As explained above, it is not th
complete object that is returned, but only a reference
the object; but the client sees no distinction betwee
remote and local objects.

2.2 Distributed and Shared-Memory
Parallelism
In the distributed memorymodel, parallel computation
involved dividing the computation between the processo
of the parallel machine. Each processor has its ow
memory, and information is exchanged through messag
If each processor has a predictable, static workload, su

Real
Object

method
implementation

network

RMI Client
interface

RMI Server

Virtual

Figure 2. Client-Server communication through Java RMI (Remote Method Invocation). Each shared
object has an interface, common to client and server sides, that defines what methods are available. Th
client can invoke methods on the object, but these are executed on the server where the object actual
resides.

Object

skeleton
methods

stub
methods
6 of 14

ent
the
ing

nt

he
e

on

e
he
a
e

load-balancing is relatively easy, and can be done before
runtime. In a more complex, dynamic situation, it
becomes much more difficult. Modern flow solvers, such
as ParNSS, switch on and off physical and chemical
models, solution algorithms, and grid complexity as the
shock moves through the domain. In this case, complex
dynamic load-balancing algorithms [19] are needed to
move computational load from processor to processor.

Now, however, another approach is becoming viable: the
parallel processors run a multithreaded program, they
share memory, and the machine isself-scheduling. Each
thread of control is queued for execution, and a manager

process decides which thread can run when. To prev
access of two or more threads to the same variable at
same time Java provides an object lock mechanism us
thesynchronized key word.

3. Parallel Structure of the
JParNSS Code
Fig. 4 shows the structure of the JParNSS code. A clie

process connects to the RMI registry on the server, and
uses the string “JpMaster” to get an object of class
JpMaster . This object is used to generate multiple
sessions, so that several clients can be using the system at
the same time for independent computations. The code
can be used by several users at the same time. The
JpMaster has anew method that creates a new session and
returns an integer sessionID. This integer can be used to
get or destroy an old session.

The session object now creates a multithreaded collection
of Node objects, which handle synchronization aspects of
the computation; each node is dynamically linked to a
Solver object, which handles the numerics.

The remote Master object is obtained by looking up on the
RMI registry on a machine (here called “servername”),
asking for an object whose name is “JpMaster”). The

Master object can create a new Session by invoking t
newJpSession method; this is of course executed on th
remote server because its parent object is remote:

mpMaster = (JpMaster)Nam-
ing.lookup(“rmi://servername/JpMaster”);

mpSessionId = mpMaster.newJpSession();

mpSession = mpMaster.getJpSession(
mpSessionId);

In this code fragment, note that in addition to the Sessi
object itself, the Master provides an integerSessionId .
This is done so that the client can detach itself from th
server and close down, then at a later time, use t
SessionId to reattach to the Session, possibly from
different machine, in order to check on the status of th
running computation.

Figure 3. Every solver object contains the data of and the numerics for one block.The solver class is sent
from the client to the server that is, different users may use different solvers.
7 of 14

it,

g
ute
s,

x

n

e

n

Once the Session object is created, it is initialized and its
execution begins, meaning that it spawns a number of
Node threads, each of which executes a Solver:

public class JpSessionImp extends Uni-
castRemoteObject implements JpSession {

private JpNodeImp nodeArray[];

private JpSolver solverArray[];

public void initSession(int number-
OfNodes, ...) {

nodeArray = new JpNodeImp[num-
berOfNodes];

solverArray = new
JpSolver[numberOfNodes];

...

}

}

The code above is a small part of the process of creating
the array of solver threads. Once the arrays of nodes and
solvers are created, each is initialized, and each is started.
The initialization of a node includes setting up
connections to its neighbors, initalizing the data array, and
setting up boundary conditions. When all the node threads
are ready to run their solvers, computation begins. The
solver object then does what we expect in a parallel

solver: it exchanges data with the solvers that surround
and computes the new solution for the next iteration.

3.1 Communication between blocks
Essentially, each block of the computation is alternatin
between computation and data exchange. The comp
phase consists of computing fluxes at cell boundarie
then adding (subtracting) the incoming (outgoing) flu
from the values of the primitive variables in each cell.

3.2 Running JParNSS
In order to set up theJParNSScode on both the client and
the server, the following stages are needed.

1. [Server: compile server programs] Compile (javac)
the java files (extension .java) of the server module o
the server.

2. [Client: compile client programs] Compile the java
files on the client.

3. [Server: generate stub and skeleton codes using
rmic compiler] Generate the stub (client) and skele-
ton (server) code by running the rmi compiler (rmic)
on the server and copy the stub code to the client. Th

Solver

Node

RMI
registry

Multiple sessionsSingle object
in RMI registry

Each Session controls
multiple Node threads

Each Node has a
dynamically-linked
Solver

for different users

Session
Session

Session

Solver

Node

Solver

Node

Solver

Node

Solver

Node

Master

RMI over network

Client GUI

Figure 4. The client controls remote objects by invoking methods on them. There is only one registered
RMI object, the Master, which can spawn Sessions so that multiple users can work. Each Session ca
spawn a number of Node threads, each of which can dynamically load a Solver, which is responsible for
computation in a single block of the grid.
8 of 14

s
o
e
ble
is
d

is
ful
ds
y

as
e
24

s
he
er-
of
eds
A
es
f

s
ng
h
is
y

stub code contains the signatures of the remote meth-
ods and provides the necessary information for the cli-
ent code.

4. [Server: registry setup] Start theregistryto enlist all
remote objects on the server. A server object is regis-
tered by giving a reference and a name (unique string)
to theregistry.On the client theNaming.lookup()
method of the stub code accesses the remote object on
the server by giving the server name inURL format,
combined with the name of the server object, as has
been registered in theregistry.

5. [Server: object registration (binding)] Start the
code that registers (binding) all objects of class imple-
mentation on the server, i.e. theJpMasterprocess.

6. [Client: remote object lookup] Start a program that
looks up the registered remote server objects. The
JpClient can then manipulate these remote objects by
invoking methods, and create new remote objects.

The interfaces, that are seen by both client and server, are
stored in directoryShare. Client, Server, and Shareare
subdirectories of directoryJParNSScontaining the make
file, the documentation etc.

4. Implementation of Threads by
the Operating System)
There are three basic models of thread implementations:
“many-to-one”, “one-to-one”, and “many-to-many”.

In a many-to-one implementation — also referred to a
“user-level threads” — all thread activity is restricted t
user space. Additionally, at any given time, only on
thread can access the kernel, so only one schedula
entity is known to the operating system. As a result, th
multithreading model provides limited concurrency an
does not exploit multiprocessors.

In the “one-to-one” thread model, the main problem
that it places a restriction on the developer to be care
and frugal with threads, as each additional thread ad
more “weight” to the process. Consequently, man
implementations of the one-to-one model, such
Windows NT and the OS/2® threads package, limit th
number of threads supported on the system. (i.e. 10
threads on Windows NT)

In the “many-to-many” model, a program can have a
many threads as are appropriate without making t
process too heavy or burdensome. In this model, a us
level threads library provides sophisticated scheduling
user-level threads above kernel threads. The kernel ne
to manage only the threads that are currently active.
many-to-many implementation at the user level reduc
programming effort as it lifts restrictions on the number o
threads that can be effectively used in an application.

A many-to-many multithreading implementation thu
provides a standard interface, a simpler programmi
model, and provides optimal performance for eac
process. The Java virtual machine with the Solar
operating environment is the first many-to-man

Node i, Face 1
Node i, Face 2
Node i, Face 3
Node i, Face 4

Node j, Face 1
Node j, Face 2
Node j, Face 3
Node j, Face 4

Node i Node j

Node N, Face 4

re
ad

y

Transform

Figure 5. Communication between blocks. Each block copies the first layer of internal points into the face
buffer, and the flag is set to “ready” for that face, meaning that the neighbor block can read it. The neighbor
reads from the buffer into its halo layer. The word “Transform” refers to the difficult problem (in 3D) of
mapping the face array to one face of the block, or other protocol translation from block to block.

co
py

writing to face buffer reading from face buffer
9 of 14

e
e

ran
le

ow
h-

re
commercial implementation of Java on a multithreaded
OS.

5. Computational Results
At present the solver class is implemented for 2D and for
Cartesian coordinate systems. In addition, the full
multiblock layer has not been implemented. No attempts
were made to reduce the computing time, using for
example the IBM Java compiler [1], [2] or the software

offered by [3]. Neither was there an attempt to replac
RMI by a faster communication module such as [18]. Th
design of JParNSS strictly follows Kernighan’s rule
‘Make it right before you make it faster’. In reference [1]
speeds between 80% and 90% of corresponding Fort
programs were obtained and a compiler will be availab
soon.

As a test case, we have chosen to compute an Euler fl
past a forward-facing step at Mach 3. The resulting mac
number field is shown in Fig. 7.

5.1 Computing Times for
Monoprocessors

In Table 1 computing times for various processors a

= Thread

= LWP

Java Application

User Space

Kernel Space

Native

Figure 6. The many-to-many model (many user-level threads to many kernel-level threads) avoids many of
the limitations of the one-to-one model, while extending multithreading capabilities even further. The many-
to-many model, also referred to as the two-level model, minimizes programming effort while reducing the
cost and weight of each thread.

Figure 7. Euler flow past a forward-facing step at Mach 3. All computations are explicit and first order
accurate. Shown is the Mach-number distribution.

Table 1. JParNSS computing times for various monoprocessors

Architecture
Number
of blocks

Number
of cells

Computing
time [s]

Memory
[MB]

JDK
version

PentiPentium II 300 38 12000 331 256 1.1.6
10 of 14

given. As far as possible, the same version of JDK was
used.

5.2 Computing Times for
Multiprocessors
In Table 2 JParNSS is run on a variety of architectures.

AMD K6-2 300 MHz 38 12000 1045 64 1.1.7

Sun Ultra 10 38 12000 358 512 1.1.3

Sun E450 38 12000 237 2000 1.1.6

SGI R8000 38 12000 2678 3000 1.1.6

PentiPentium II 300 148 12000 355 256 1.1.6

AMD K6-2 300 MHz 148 12000 1104 64 1.1.7

Sun Ultra 10 148 12000 354 512 1.1.3

Sun E450 148 12000 275 2000 1.1.6

SGI R8000 148 12000 2753 3000 1.1.6

Table 1. JParNSS computing times for various monoprocessors

Table 2. JparNSS computing times for multiprocessor architectures

Number of
processors Architecture

Number
of blocks

Number
of cells

Computing
time [s]

Memory
[MB]

JDK
version

2 Pentium II 300 MHz 3 48000 1273 256 1.1.6

2 Sun Ultra 60 3 48000 787 512 1.2beta5

2 Sun E450 3 48000 1015 2000 1.1.6

3 Sun E450 3 48000 963 2000 1.1.6

4 Sun E450 3 48000 1044 2000 1.1.6

2 Pentium II 300 MHz 10 48000 708 256 1.1.6

2 Sun Ultra 60 10 48000 475 1100 1.2beta5

2 Sun E450 10 48000 563 2000 1.1.6

3 Sun E450 10 48000 472 2000 1.1.6

4 Sun E450 10 48000 455 2000 1.1.6

2 Pentium II 300 MHz 38 48000 658 256 1.1.6

2 Sun Ultra 60 38 48000 417 1100 1.2beta5

2 Sun E450 38 48000 514 2000 1.1.6

3 Sun E450 38 48000 349 2000 1.1.6

4 Sun E450 38 48000 261 2000 1.1.6

2 Pentium II 300 MHz 148 48000 640 256 1.1.6

2 Sun Ultra 60 148 48000 421 1100 1.2beta5

2 Sun E450 148 48000 529 2000 1.1.6

3 Sun E450 148 48000 343 2000 1.1.6

4 Sun E450 148 48000 260 2000 1.1.6

2 Pentium II 300 MHz 38 192000 n.a. 256 1.1.6

2 Sun Ultra 60 38 192000 2926 1100 1.2beta5

2 Sun E450 38 192000 n.a. 2000 1.1.6

3 Sun E450 38 192000 n.a. 2000 1.1.6

4 Sun E450 38 192000 n.a. 2000 1.1.6
11 of 14

he
e
all
te

ve
m,
a
a

be

at
or

is
s
in

n
ted
with different numbers of processors. In all runs the
number of threads equals the number of processors. This
corresponds to the fact that a grid with several thousand
blocks has to be run on multiprocessor system whose

number of processors is substantially smaller than t
number of blocks. As can be seen from Table 2, th
present paper is restricted to architectures with a sm
number of processors. In Fig. 8 is shown the compu

times as the number of blocks of the multiblock grid is
varied. Here the number of active threads is the same as
the number of blocks. As blocks are split, we have more
threads than processors, so that each processor has enough
work to do: the computational efficiency increases
because the load-balance between the four processors
improves. For a much larger number of blocks, however,
the thread overhead becomes larger than the
computational work associated with the block, and
efficiency drops.

6. Conclusions and Future Work
This prototype implementation of a multiblock solver
represents a first stage in the “Have Java” project. We have
shown how a flexible, component-based architecture can

be used to create a fluid solver. In this paper, we ha
shown the component that is responsible for parallelis
and also the remote-invocation layer, which allows
remote client to initiate and steer a computation on
supercomputer.

In the component model, different parts of the code can
developed separately. In this context,componentimplies a
well-defined interface with other components, so th
components can be easily exchanged, upgraded,
worked-on by different parts of a collaboration.

The next component that we shall create in this program
a multiblock component, allowing complex geometrie
and topologies to be handled. The computational doma
is divided logically into a set of boxes, each with its ow
local coordinate system. The boxes are then connec
through the multiblock component.

2 Pentium II 300 MHz 148 192000 n.a. 256 1.1.6

2 Sun Ultra 60 148 192000 283342 1100 1.2beta5

2 Sun E450 148 192000 n.a. 2000 1.1.6

3 Sun E450 148 192000 n.a. 2000 1.1.6

4 Sun E450 148 192000 n.a. 2000 1.1.6

Table 2. JparNSS computing times for multiprocessor architectures

Number of
processors Architecture

Number
of blocks

Number
of cells

Computing
time [s]

Memory
[MB]

JDK
version

Figure 8. Run time for JParNSS on the 4-processor Sun 450 vs. number of blocks used for the
computation. Full computational load for 4 processors is achieved with 38 threads (blocks).

0 50 100 150
number of blocks

200

300

400

500

600

700

800

900

1000

1100

co
mp

ute
tim

ei
ns

ec
on

ds

jdk1.1.6 production release

Simulation of forward facing step on
Sun Enterprise 450, UltraSPARC II 300 MHz,
2 GB Memory, Solaris 2.6

192,000 cells in 38 blocks (38 native threads)

38 blocks 148 blocks

3 blocks

10 blocks
12 of 14

e

m

all
en

grid
nd 2
s not
We have provided a framework for a solver that is cast in
the form of general conservation laws. Another

component of the system is the expression of th
conservation system that is being solved.

Figure 9. Processor utilization for the 4-processor Sun E450 running JParnss. This screenshot is obtained fro
the Solaris toolproctool. The bars from left to right denote CPU numbers 0 to 3, the rightmost bar shows the
average load of the CPUs. It is important that the thread scheduler generates a full computational load for
processors. If the number of threads is too small or threads of highly different compautational load have be
produced, parallel efficiency is reduced.

1 2 3 4
number of processors

300

400

500

600

700

800

900

1000

co
m

pu
te

tim
e

in
se

co
nd

s

jdk1.2 dev05 production beta release

jdk1.1.6 production release

Simulation of forward facing step on
Sun Enterprise 450, UltraSPARC II 300 MHz, 2 GB Memory, Solaris 2.6

48,000 cells in 38 blocks (38 native threads)

75% efficiency

Figure 10. Run time for JParNSS on the 4-processor Sun 450 vs. number of processors. The 38 block
comprising 48,000 cells was used for the simulations. The figure shows a substantial speedup for the 1 a
processor configurations for JDK1.2 over JDK1.1.6. However, when 3 and 4 procesors are used, JDK 1.2 doe
scale properly and parallel efficiency is lost.
13 of 14

er

,

-

i-
Acknowledgments
The authors are grateful to Professor Mark Cross,
University of Greenwich, London for numerous
stimulating discussions.

This project was partly funded by the ministry of Science
and Culture of the State of Lower Saxony, Germany and
the European Commission under contractJavaPar
1998.262.

References

[1] J. E. Moreira, S. P. Midkiff, M. Gupta, From Flop to
Megaflop: Java for Technical Computing, IBM Research
Report RC 21166.

[2] J. E. Moreira, S. P. Midkiff, M. Gupta, A Comparison of
Java, C/C++, andf Fortran for Numerical Computing,
IBM Research Report RC 21255.

[3] Java Lapack implementation, from AppStar LLC., http://
www.appstar.com.

[4] JavaSoft Corporation: http://www.javasoft.com/

[5] Horstman, Cay S., Cornell, G., 1998:CoreJAVA, Volume
I-Fundamentals, Prentice Hall.

[6] Horstman, Cay S., Cornell, G., 1998:CoreJAVA, Volume
II-Advanced Features, Prentice Hall.

[7] Häuser J., Williams R.D, Spel M., Muylaert J., ParNSS:
An Efficient Parallel Navier-Stokes Solver for Complex
Geometries,AIAA 94-2263, AIAA 25th Fluid Dynam-
ics Conference, Colorado Springs, June 1994

[8] Häuser, J., Xia, Y., Muylaert, J., Spel, M.,Structured
Surface Definition and Grid Generation for Complex
Aerospace Configurations, In: Proceedings of the 13th
AIAA Computational Fluid Dynamics Conference -
Open Forum, June 29 - July 2, 1997, Part 2, pp. 836-837,
ISBN 1-56347-233-3

[9] Eiseman, Peter R., 1998:GridPro v3.1, The CFD Link to
Design, Topology Input Language Manual, Program
Development Corporation Inc., 300 Hamilton Ave.,
Suite 409, White Plains, NY 10601.

[10] Rich, B., 1994:Skunk Works, Little Brown and Com-
pany.

[11] Fox, G.C. (ed.), 1997:Java for Computational Science
and Engineering- Simulation and Modeling I, Concur-
rency Practice and Experience, Vol. 9(11), June
1997,Wiley.

[12] Fox, G.C. (ed.), 1997:Java for Computational Science
and Engineering- Simulation and Modeling II, Concur-

rency Practice and Experience, Vol. 9(11), Novemb
1997,Wiley.

[13] Proceedings of theACM Workshop on Java for High
Performance Network Computing, Stanford University,
Palo Alto, California, February 28 & March 1, 1998,
www.cs.ucsb.edu/conferences/java98.

[14] Lea, D., 1997:Concurrent Programming in Java, Addi-
son Wesley.

[15] Sun Microsystems,Java Remote Method Invocation
Specification, Revision 1.41, JDK 1.1.1 March 24, 1997
http://www.javasoft.com/docs/

[16] James Gosling, Henry McGilton,The Java Language
Environment - A White Paper, Sun Microsystems Okto-
ber 1995, http://www.javasoft.com/docs/

[17] SunSoft, Java On Solaris 2.6 - A White Paper, Septem
ber 1997,
http://www.sun.com/solaris/java/wp-java/

[18] Java Party, an improved remote-method invocation, Un
versity of Karlsrühe.

[19] Winkelmann, R., Häuser J., Williams R.D,Strategies for
Parallel and Numerical Scalability of CFD Codes,
Comp. Meth. Appl. Mech. Engng. (accepted)

.

14 of 14

	1. Java as a Programming Tool in Engineering
	1.1 Java for Aerospace Applications
	1.2 “Have Java” Objectives
	1.3 Java Technologies
	1.3.1 Object-Oriented Programming
	1.3.2 Robustness
	1.3.3 Concurrent, distributed, parallel
	1.3.4 Portability
	1.3.5 Leveraging Business Investment
	1.3.6 Multithreading
	1.3.7 Dynamic linking
	1.3.8 Remote Method Invocation

	2. Implementation of the Java Parallel Navier-Stokes Solver
	2.1 Remote Objects: Client and Server
	2.2 Distributed and Shared-Memory Parallelism

	3. Parallel Structure of the JParNSS Code
	3.1 Communication between blocks
	3.2 Running JParNSS

	4. Implementation of Threads by the Operating System)
	5. Computational Results
	5.1 Computing Times for Monoprocessors
	5.2 Computing Times for Multiprocessors

	6. Conclusions and Future Work

