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SUMMARY

This paper gives the results of an appheation of the SWEs (shallow water cquations) 1o a part of the
Hamburg harbour arca. which is a complex flow domuain. using the BFG approach. outlmed in Puart 1
The results of a grid doubling procedure generating the desired computattonal grnid from a coarse mitil
mesh are wlso presented. A second class of problems which ts addressed. demands time-dependent co-ordinate
systems. The problems which ure soived are the free surfuce problem for a moving wave which eventually
breaks and for a wave which is reflected by the solid walls of a rectangular basin.

KEY WORDS  Shallow Water Equations Boundary Fitted Grids  Time Dependent Solution Domains  Free Surface
Problems

INTRODUCTION

The present paper is concerned with the solution of [luid flow problems using houndary fitted
co-ordinates. To show the usc of BFGs for two-dimensional internal flows, several complex flow
domains have been modetled. First. simulation results for a section of the Hamburg harbour
area are presented. This area ts geometrically very complex and is therefore well suited as an
example demonstrating the capabilitics of BFGs.

A second set of problems was calculated tn order 1o see how time-dependent solution areas
can be described. Two free surface problems were chosen, namely the breaking wave problem,
first solved by Haussling.! and the reflection of a wave in a rectangular basin. Because of the
boundary condition at the free surface. these problems are non-linear. When the wave begins
to break, the grid is severely distorted and computations become meaningless.
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SOLUTION OF THE SHALLOW WATER WAVYE EQUATIONS

First. the SWEs are considered which describe the flow field and the water level in an inviscid
rotating ocean under the assumption that the wavelength is much larger than the elevation from
the still water level. In Cartesian co-ordinates the equations read
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where . ¢ denote horizontal sclocity components. b is water level and D is total water depth.
If fu crssque Vo and D > HLequations {1) can be linearized by replacing D by H and omitting
the convective terms.

Introduction of transports U= ubf Vi=oH yields
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Three initial conditions are necessary for equations (2). We choose inttial conditions for L0 1

and h. For solid walls it is required that the normal velocity component vamishes. e, U, = (.
For open boundaries, i.c. boundaries which separate the solution area from the rest of the ocean. no
physical boundary conditions can be specified. Therefore. the transient water level £ 1s prescribed.
This requires. however. that open boundaries be separated far enough from cach other so that
inaccuracies of the measured water levels do not cause unreahistic flow fields.

If the boundary moves. we demand uD = 0. which is satisfied for D = 0. i.c. the otal water
depth vanishes. This property can be used to determine the variation of the shoreline in the
course of time. Hence dry running areas can also be modelled, ¢.g. Reference 2. The shallow
water equations can be solved analytically for a rectangular basin of constant depth as well as
for circular basins of constant and parabotic depth variation. Extensive comparisons of analytical
and numerical results, along with comparisons between BFG models and conventional finite
differance models using rectangular grids are found in Reference 3.

Z] Nee water surface
L %,y shil water level

Bottom

Figure 1. Co-ordinate system for shallow water equations: h = surface elevation: D = water depth; H = still water depth
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Introducing the vectors w=(LU. V. O)" =(u,. w>. 037 and F=(0. 0. /4. the momentum
cquations (2) can be written in the form

‘_”i ‘h
eyl —+{fxw), =0, {3)
! N

¢
or

u, ~gHh, &, [t =0,
where the nomenclature of section 3 of Part 1* has been used. The respective covariant form is
o, gHh, g [t =0 (4

where u,. u* are covariant and contravariant components. In generalized co-ordinates equations (2)
take the following form. where the first two cquations follow directly from i4) and the third one is
obtained from 1293 in Part [ which gives the general form of the divergence:
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If ome wishes to retain the Cartesian velocity components. equations 121 can be transformed
hy use of the chain rule. which vields
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Derivatives can be brought into o conservative form by adding a term  fiy_, - 3,.b=1.
where { is u function of x. e.g
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where the [irst lorm is non-consersative and the second is the conservative one. For the analvtical
solution the two schemes are equivalent. Numerically the schemes are different, since, dependent
on the discretization. the order of the derivation cannot be interchanged for second derivatives. In
Reference 5 it was reported that a conservative scheme vields more accurate results. Test
calculations for an annular ring revealed that in this case the non-conservative scheme wus more
accurate.” As a BC it is required that the normal transport component U/, vanishes at solid walls.
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Since inviscid flow is considered. the tangential transport need not vanish. By use of equations (2),
one obtains for U; and U,

L J

Ch gHD U =0,

et <n

L o

‘ L gH ’+ fU, = (8)

Since the staggered grid is chosen such that only velocity points lic on the boundary, the first
of equations {8} is not needed. In order to calculate the Cartesian UV-components of the
tangential transport. the angle w is intraduced, which is the ungle of rotation between the
Cartesian x -y and the T f co-ordinate systems and 1s defined by
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where the prime denotes the partial derivative with respect to either & or », since boundary
curves are parametrized by cither varithle. Hence. the equations on the boundary take the form
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The above cquations are discretized by replacing the time derivatives by forward differences,
and the space derivatives by central ditferences. The diseretized transformed SWEs are of the form

Lntt—un |
i ’II+"~]HJ L i, Jqurl*:lw"_h,rajll._]:_l. hn—_l _ n-—l )‘3]_![

.il.'{ ij=1 -1
T 7 ! J

Vv

i

"{»—_'_— ;H SO AT =P D xS ) 2]+ U, =0
I.J
(1
et —h?. 1 . .
! - .;+-,J [ " j (LI+‘j L?-I.} (Ll}'l L"T.j*l]
T i
ll’:—lj 1—1;)+\IJ‘LIJ+1 zj I]J‘(]

Under the assumption that a solution is formed by plane waves. the integration in time must
not amplify the wave amplitudes. otherwise the scheme is unstable. Explicit schemes often have
the advantage of smaller phase error in comparison with implicit schemes. but are limited by
the allowable time-step size. In the following the results of the stability analysis for equations (11)
are presented. where the error introduced by interpolation on the staggered grid of, e.g. ¢L ¢,
to the location of an h-peint is not accounted for. Furthermore, it is assumed that metric
coefficients are locally constant. Inserting the plane wave formulation

L Us
Fol=1 ¥, Jexpiitor —kx —1y)] (12)
h he

in the discretized equations (11}, denoting the grid spacing by A and assuming f = 0ino Coriolis
force), one finally obtains the dispersion relation for the explicit scheme (U and V values taken
at time step n} where cos wr is replaced by 1 — w?22:2 (that is w1 « | is assumed)
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Figure 2. Faploded view of an 15 segment area which is part of the Hamburg harbour region. The shallow water wase
equations for constant water depth hive been solved on this snlution domain
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A (gl sin? kA + 2g T sin kA sinlA + ¢33 sin? [A). 13}

For the semi-implicit scheme, where U and Vo values are taken at time step n + L the rhisof
equation {13y s multiplied by 2. In Cuartestan co-ordinates the dispersion relations reduce (in the
one-dimensional case) 1o the well-known formulae

) . _l 7Y R . H ' | A'-A-“) 14
ALl I I RN )( e (14
for the exphent and semi-tmplicit schemes, respectively, Waves of wavelength 24 are stationary
as observed from equation (k4 Only waves of longer wavelength arc propagated with a phase
speed depending on the wavelength. A wave packet is therefore dispersed in the course of time.
The case of strongiy varving cocfficients in space may invalidate the above analysis,” and
refraction and reflection of wives must be expected. It is well known. that the order of a scheme
is reduced for variable coclficients, Numerical errors grow with 1-sin# where 115 the angle of
intersection between co-ordinate lines. Large vartations of the aspect ratio may have the same
effect. Without proofl. we state that the above scheme is unstable if the Coriols terms are
computed at time step . If the values are taken at o + b, the scheme is stable provided the ume
step size is properly chosen.

Figure 2 depicts the segment structure of the initial grid for the Hamburg harbour area and
in Figure 3 the effect of the grid doubling algorithm is shown.'*

Although the stability analysis shows that the simple numerical scheme used 15 stable. and
numerical experiences for un annular ring demonstrated the stability of the scheme cven alter
1000 perieds,? the scheme became unstable for the complex Hamburg harbour area (Figure 4)
after some 15000 time steps. which is equivalent to 24 hours of simulation time. This is most
likely due to the type of staggered grid used, since U. V' values arc computed at the same location.
This scheme worked well in Reference 2 where the SWEs were solved on an annular ring with
large Coriolis cocfficients, and excellent agreement with the analytic solution was obtained.
Problems with an implicit scheme are reported in Reference 7. Implicit schemes are much
maore laborious to program for composite grids, since larger overlaps are necessary.

The instability could not be climinated by filtering.*-® although linear filtering was successfulty
used to damp the non-linear instabilities of the free surface problem (Figure 5) which arise from the
non-linear boundary conditions. Since the free surface problem was deseribed in Reference | and
10. it is only briefly discussed here.
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Figure 3 Shows the inital coarse grud for the Hamburg harbour arcas (b refined grad aficr fiest doubling: ic) final gnd
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Frgure 3 Cuiculated flow ficld tor ¢ part of the Humburg harbour area. 1t was assumed that the solutzon wre is of

constanl

depth. This. howeser. does not simplilhy the equations since varable ceeflicients are introduced by the
transformaton

To simplify the continuity and momentum equations. we assume the fluid to be incompressibie
and mviscid. Tt is further assumed that the fluid 15 irrotational. Since the rotation of a gradient

always

vamshes. a velocity potenttal © can be introduced. where v = V. Insertion into the

continuity equation leads to Laplace’s equation

(1)
(i)

A =0, (15)

The velocity potential has to satisfy the following BCs:
At solid boundarics: 1, = Vop-n =0 where n is the unit normal vector. (16)
At the free surface (dynamical BC): since the interface (water—air) has no mass. the forces. 1.e.

WA

the pressures at both sides. must be equal: hence p = p, where p,, is (constant) air pressure. Lf
the Euler equations are solved for p and V x v =0 is used. this vields

‘o

of

= — 4V V) + yz. on § (free surface), {17

where p, was set Lo zero and g- accounts for gravity,
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(i) At left and right sides {see Figure 5k constant velocities are prescribed. since the co-ordinate
svstem moves with velocity v, with respect to the bottom of the solution domain. This
condition prevents the wave running out of the solution area

V= —v. (18)

{iv) Computation of the location of unknown free surface: the free surface is defined by the
properiy that fuid does not cross it i.e. the normal velocity component of the fluid with
respect 1o the free surfuce must be equal to the normal velocity component of the moving
free surface. After some algebraic manipulation this finally leads to the {obvious) result

dx dr = Vo on S, {19)
where «is the position vector of a fluid particle on the free surface.

(vi The grd is generated from

AZ=P Ap=0Q + BCs. 120)

Although the Laplace equation has to be sohved. the problem is non-lincar because of the
above BCs

Along with 111 (ivi. the transformed grid generation equations indicated in v (Part L
cquations (47) and (481} have o be solved. The BCs for this system are obtained from the
computed co-ordinates resubling from the wave movement.

in Figure 6. where the reflection of & wave by solid walls is considered, Dirichlet conditions
are nol allowed for the geid generation equations at left and right boundaries. Rather. Neuman
conditions hiave o be prescribed such that boundary points can move with the water level.

For the transformation of the above equations the time dependence (Part B eguations (321
his to be accounted Tor. [n the computational plane. the co-ordinate system is fixed.

The computations are performed in the following order. First, initial distributions for the
velocity potentiat ¢ and the free surface are needed. Here the sotution of the Korteweg de Vries
equation is used’ which describes  soliton and gives expressions for the surface elevation b
and for @ on the free surface. The initat distributions for ¢ as well as for § and # ure {ound
by numerical integration using the respective equations. The solution has the advantage that it
represents onby a small peak. so that BC (i) is satisfied. Of course. the soliton sulution Iy not
stable since in our case the full non-fincar equations are solved.

From (iv] the new shape and location of the free surface are determined and from the dynamical
BCs (ii) the new velocity potential ¢ at the free surface is found.

Employing this new geometry. the new co-ordinate system is constructed solving the equations
in (v). With that. Aé = 0 can be solved atong with the BCs (i) and (iii). After thut. the next time
step can be calculated.

CONCLUSIONS AND OUTLOOK

In this paper a description of the use of BFGs is given along with the application of these
techniques to three time-dependent problems in CFD. As an exampie problem in this paper the
application of the BFG method to the SWEs for a complex two-dimensional solution domain
was studied. Stability problems were encountered after some 15,000 time steps for the explicit
scheme. It is believed that the instability is caused by the type of staggered grid used. The
instability wus not removed by linear filtering.

It will be tested whether predictor corrector schemes as. for example, described in Reference 12
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will yield better results for the SWEs. Since these schemes are in delta form, the use of a multigrid
method could be considered.

Two non-lingar problems with time dependent geometry. namely the breaking wave problem
and the reflection of a wave by solid walls were successfully modelled. demonstrating that BFGs
are capable of handling complex flow domains,
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