Reprinted from

Computer methods
in applied
mechanics and
engineering

Comput. Methods Appl. Mech, Engrg. 174 (1999) 433-456

Strategies for parallel and numerical scalability of CFD codes

Ralf Winkelmann®"', Jochem Hiuser**, Roy D. Williams®

*Department of Transportation, University of Applied Sciences and Center of Logistics and Expert Systems GmbH,
Karl-Scharfenberg Strasse 53-57, 38229 Salzginer, Germany
"Center of Advanced Computing Research, California Institure of Technology, Pasadena, CA, USA

Received 4 February 1998; revised 14 May 1998

ELSEVIER
ChbhPDF - www . fastio.com

http://www.fastio.com/

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING

EDITORS: LH. ARGYRIS, STUTTGART and LONDON
T.J.R. HUGHES, STANFORD, CA
J.T. ODEN, AUSTIN, TX

EDITORIAL ADNDRESSES

John H ARGYRIS

Institut fiir Computer Anwendunyen
Pfaffenwaldring 27

D- 70569 STUTTGART

Crermany

{Editorial Office)

ASSOCIATE EDITORS

K. APPA, Lake Forest, CA

1. BABUSKA, Austin, TX

A). BAKER, Knoxville, TN
T.B. BELYTSCHKO, Evansion, L
F. BREZZI, Pavia

P.G. CYARLET, Paris

L. DEMEKOWICZ, Austin, TX

R.E. EWING, College Station, TX
E. GLOWINSKI, Houstan, TX

ADVISORY EDITORS

M.E. ARNAL, Buden

L5, ARORA, lowa Ciry, 14
K.). BATHE, Cambridge, MA
P.G. BERGAN, Hevik

1.F. BESSELING, Delft

M.O. BRISTEAU, Le Chesnay
C. CANUTQ, Turin

J.L. CHENOT., Valbonne

YK. CHEUNG, Hong Kong
T.J. CHUNG, Huntsville, AL
T.A. CRUSE, ~Nashville, TN
E.R.DE ARANTES EOLIVEIRA, Lisbon
1. DONEA, Ispra

A. ERIKSSON. Stockholm
C.FARHAT, Boulder, CO
C.A. FELIPPA, Boulder, CO
C.J. FITZSIMONS, Baden- Dearswil
M. GERADIN, Liége

R. qRUBER, Marno

H.-A. HAGGBLAD, Luled
E.J.HAUG, fowa City, IA

Editorial Secretary: Marlies PARSONS

Thomas).R. HUGHES
vision of

Applied Mechanics
Durand Building
Room No. 281
Stanford Universiry
STANFORD

CA L305- 3040, L/5A

RW. LEWIS, Swansea

L.L. LIONS, Paris

F.I.. LITVIN, Chicago, if.

H. LOMAX, Maoffer Field, CA
1L.8.1 MORLEY, Farmborough
N. OLHOFF, Aalborg

I ONATE. Barcelona

M. PAPADRAKAKIS, Athens

1.C. HEINRICH, Tucson, AZ
U. HEISE, Aachen

). HELLESLAND, Oslo

C. HOEN, Osiu

M. HOGGE, Liége

S. IDELSOHN, Santa Fe

L. JOHANSSON, Linkdping
C. JORNSON, Gateborg

M. KAWAHARA, Tokvo
SW.KEY. Albuquergue. NM
A. KLARBRING, Linkioping
M. KLEIBER, Warsaw
P.LADEVEZE. Chuachan
A.LEGER, Clumart

B.F. LEONARD, Akron, OH
P. LE TALLEC, Paris

W.K. LIU, Evansion, IL

G. MAIER. Milan

H.A. MANG, Vienna

A. NEEDLEMAN, Providence, R}
M.P. NIELSEN, Lyngby

W. PRAGER
Founding Editor
{(deceased 1980)

J. Tinsley ODEN

The University of Teaas
The Texas Instituie for
Compututional and
Applied Mathematics
Tavter Halt 2400
AUSTIN

TX 78712, USA

J. PLANCHARD, Clamart

L. RAMM, Sturtgart

G. STRANG, Cambridge, MA
R.L. TAYLOR, Berkeley, CA
5.0. WILLE, Osle

G. YAGAWA, Tokyo

D.ZHU. Xi*an

0.C. ZIENKIEWICZ, Swanseq

A K.NOOR, Hampton, VA

R. OHAYON, Puriy

). PERIAUX, Saint Cloud

QIAN Ling-xi (L.H. Tsien), Dalian
A.K. RAO, Hyderabad

B.D. REDDY, Rondebosch

IN. REDDY, College Starion, TX
E. RIKS, Delft

G.LN. ROZVANY, Esven

W. SCHIEHLEN, Stutigart

M.S. SHEPHARD, Fray, NY

E. STEIN, Hannover

PK. SWEBY, Reading

M. TANAKA, Nagano

T.E. TEZDUYAR. Housion, TX
CW. TROWBRIDGE, Kidiington
H. VAN DER VORST, Ltrecht
LR WIHITEMAN, Urbridge

K.J. WILLAM, Bouider, CO

T. ZIMMERMANN, Lausanne

Advertising information. Advertising orders and enquiries can be sent to; Europe and ROW: Rachel Gresle-Farthing, Elsevier Science Ltd., Adverising
Depantment, The Boulevard, Langford Lane, Kidlington, Oxford OX5 IGB, UK; phone: (+44) (1865) 843565; fax: (+44) (1865) 843976; ¢-mail:
r.gresle-farthing @elsevier.co.uk. USA and Canada: Elscvier Science Inc., Mr Tino DeCarlo, 655 Avenue of the Americas, New York, NY 10010-5107, LSA;
phone: (+1) (212) 633 3815; fax: (+1) (212} 633 3820 e-mail: Ldecarlo@elseviercom. Japan: Elsevier Science K.K.. Advertising Department, 9-15
Higashi-Azabu 1-chome, Minato-ku, Tokyo L6, Japan, phone: (4 81) (33 5561-5033; fax: (+81) {3) 5561 5047,

® The paper used in this publication meets the reguirements of ANSI/NISO Z36.48-1992 (Permanence of Paper).

ClibPDF - www .fastio.com

http://www.fastio.com/

NIL
[H te thod
3 i applied
: mechanics and
engineering

EISEVIER Comput. Methods Appl. Mech. Engrg. 174 (19991 433-456

www.elsevier.com/ locite fema

Strategies for parallel and numerical scalability of CFD codes

Ralf Winkelmann®", Jochem Hiuser**, Roy D. Williams”
“Deparmment of Transpostation, University of Applied Sciences and Center of Logistics and Exper Svstenty GnbH,
Karl-Scharfenbery Strasse 35-57. 38229 Sulzyitter, Gernn
"Center of Advanced Compusing Research, California Institute of Technology, Pusadena, CA, USA

Received 4 February 1998 revised 14 May 1998

Ahstract

In this article we discuss a strutegy For speeding up the solution of the Navier—Stokes equations on highly complex solution domeins such
as vomplete aircraft. spucecraft, or rbomachinery equipment. We have used a finite-yolume code for the (non-trbulent) Navier Stokes
equations as a testbed for implementation of inked numerical and paratlel processing technigues. Speedup is achieved by the Tangled Web
of advanced grid topology gencration, adaptive coupling, and sophisticated parallel computing techmques.

An optimized grid wpology is used to generate an optimized gnd: on the block level such a gnd is unstructured whereas within a block a
structured mesh is constructed. thus retaining the geometrical flexibility of the finite element method while maintaiming the numerical
efliciency of the finite ditference technique, To achieve a steady state solution, we use grid-sequencing: procecding from coarse 1o finer
grids, where the scheme s explicit in time. Adaptive coupling is devived from the observation that numerical schemes have differing
efficiency during the solution process, Coupling strength between grid points is ncreased by using an implicit scheme at the sub-block level.
then a1 the block level, ultimately fully implicit across the whole computational domain. Other rechmiques include switching numerical
schemes and Lhe physics model during the solution. and dynamic deactivation ol blocks. Because the computational work per block is very
variable with adaptive coupling, especially for very complex Hows. we have implemented parallel dynamic load-halancing to dynamically
transfer blocks between processors, Several 20 and 312 examples iflustrate the functioning of the Tangled Weh approach on different parallel
architectures. © 1999 Elsevier Science S.A. Al nights reserved.

1. Introduction
1.1. Motivation

Computational Fluid Dynamics is becoming increasingly sophisticated. Grids define highly complex
geometries, and flows are solved involving very different length and time scales. The number of grid points, and
thereby the number of degrees of freedom, is increasing as memory of supercomputers is growing.

During the last few years new developments in computer hardware and architectures have led to significant
advances in parallel computing and multiprocessing. It is belicved that parallel computing is the most important
means of reducing turn-around time and computational cost of large scale applications. Furthermore, massively
parallel computing is considered to be the key technology in tackling the grand challenges fucing CFD, such as
multidisciplinary analysis and optimization.

One of the main issues in parallel CFD is the flow simulation past very complex configurations and the design
of numerical algorithms which efficiently cxploit the capabilities of the parallel hardware. Especially in the case
of distributed memaory machines comprising several hundreds or even thousands ot powerful processors, this is a

* Corresponding author.
' This paper contains & major part of the Ph.D. work of the first author.

0045-7%25/99/ % — see front matter € 1999 Elsevier Science S.A. All rights reserved.

Bl SNN45-7825(98100308-8
L\lm!)l% : \‘\/xg“/\;\/(hz‘%%(:]\%) com

http://www.fastio.com/

434 R. Winkelmann er al. | Comput. Methods Appl. Mech. Engro. 174 (1999) 433- 456

non-trivial task. The important aspects in designing parallel algorithms for these architectures are partitioning of
data (domain decomposition), communication across internal boundaries, as well as dynamic load balancing (see
Section 3.4) and minimizing overhead caused by both communication and computation.

1.2, Solution methods

Regarding the solution algorithm for the Navier—Stokes equations, an explicit algorithm is easy to implement,
but is numericully less efficient than relaxation schemes in calevlating a steady state solution. Often, relaxation
schemes are used. but it should be remembered that even these methods may not converge for highly stretched
grids with large cell aspect ratios of, c.g. 10" or even 10° as needed in many viscous flows,

More generally, it can be demonstrated that a single numerical scheme has varying numerical efficiency
during the course of the solution process. The novel feature presented in this article is to apply a sequence of
numerical strategies, called the Tangled Web approach (see Section 4). The objective is to use the optimul
scheme at each stage of the solution process, switching (automatically) when certain criteria are met.

These numerical methods include grid sequencing, domain decomposition, adaptive coupling (moving (rom
an explicit scheme, 1o block-implicit, fully implicit, to Newton's method), use of iterative solvers such as
CG-GMRES, along with line-seurching und backtracking for root polishing.

The utilization of the outlined strategy atlempts to achieve both parallel and numerical scalabitity, While the
former concept concerns good scaling of solution time with the number of processors. the latter concerns good
scaling with the problem size. This is. however. generally not encountered in practice, for example the inversion
of a matrix of size N clements, needs OV ") floating point operations, Obviously, no parallel architecture could
keep pace with this computational demand—when problem size scales, we need more sophisticated algorithms
1o provide the numerical scalability that we seck.

It turns out that the combination of parallel computing and advanced solving strategies is cssential for the
development of efficient CFD codes that will serve as design tools for acrodynamic shape optimization und
multidisciplinary analysis—not just a single *magic bullet” strategy. but a collection of algorithms, each applied
where appropriate. In this article. we show this approach is effective for a number of test-cases, manually
switching between numerical strategies. [n the future we will report on criteria for automatically switching over
to a different numerical scheme as soon as the current scheme becomes numerically inefficient.

2. The Navier—Stokes equations

The equations to be solved on highly complex geometries are the Navier-Stokes equations that read in
integral form

d
—J’UdV+3£ F-d4a =0, (1}
at v AV

where U is the vector of flow variables and the tensor F denotes fluxes without reference to a particular
coordinate system. A flux can be considered us a vector of three quantities that cach comprise a vector of five
variables, the so-called flux compenents. In a Cartesian coordinate svstem, the vector of the flow variables and
the flux vector are denoted as

U= (p, pr,pu, pw, pe)T (N

and the symbol indicates Cartesian coordinates, while U is known as the vector of conservative variables
where g denotes density w, ¢, w are the Cartesiun components of the velocity vector, and e denotes the internal
energy. The fluxes are written as

ClibPDF - www .fastio.com

http://www.fastio.com/

R. Winkelmann er al. | Comput. Methods Appl. Mech. Engrg. I74 (]1999) 433456 435

ﬁl GI [:Il
F=}F|: G=|¢6, H=|H, (4)
4 G4 H..].
F, G, H,
Inviscid fluxes are of the form
ou pr o
o+ puv +p puw + p
]?‘l =| pra+p |- G,=| povtp |, ﬂl =| pow+p (5)
pwi + p pwe + p pww t+p
putl puH pwH
where enthalphy H =p + pe and p denotes pressure,
The Cartesian components of the flux tensor are of the form
0
.,
F, = T (6)
ﬂ?\'.'
g utavtowtg
0
o,
G, = T (7
(r\f
auvtouto wty
0
Ty
i, = T, (8)
T
(]-::H’l. + (]-:‘M + Cr.‘.\v + q.‘
To close the system, the equation of state for a caloricaliy perfect gas is used
1 2
p={y - Dple—5 v (9

where y = ¢, /c, 15 the specific heat ratio.
'The stress tensor. o, is proportional to the strain, i.e. the velocity gradients. The Cartesian components of the
stress tensor are

_ (P 2y +(L2)6 av, "
%M ox, T ax, T 3 % ax, AT H)O am

where the summation convention was used and x,, v, denote Cartesian coordinates and velocity components. The
coefficients u and A are called shear viscosity and volume viscosity, respectively. For Newtonian fluids like air,
the Cartesian components of the viscous force are of the form

& a
ijrf.lf(/\+,u)?\ﬁj(v-v)+p.ﬁv‘. (11}

The following relation holds
2
A+ M =0, (12}

Using Stokes’ assumption, the equal sign applies in Eq. (12)

ClibPDF - www .fastio.com

http://www.fastio.com/

436 R. Winkelmann et al. | Comput. Methods Appl. Mech. Engrg. 174 (1999) 433-456

As can be seen from Eqs. (1)—(5), the Navier—Stokes equations are nonlinear. and give rise to contact
discontinuities and (in the limit of low viscosity} shocks, requiring special numerical algorithms.

3. Parallel scalability for large scale CFD applications

In the following we make the assumption that the Navier—Stokes equations have been successiully solved on
a single processor architecture, The next question then is, can the same problem be solved on a parallel
architecture, resulting in a quasi linear speedup, thar is. can parallel scalability be achieved. For the time being,
we do not consider numerical scalability, since parallel and numerical scalability may be conflicting issues.

Parallel scalability is the ideal condition where, for a given problem, the product of execution time and
number of processors is constant. There are basically three different requirements that have to be fulfilled to
achieve parallel scalability, namely: (1) the code does not contain a sequential part; (2) communication is at
zero cost (no overhead time required); and (3) each processor has the same workload. A discussion of issues in
achieving parallel scalability can be found in [1] and |2].

In general, (1) cannot be achicved for flexible and user friendly codes because of program startup time, global
conrmunication operations such as calculation of residuals and stopping criteria, and sequential 1/0 operations.
Obviously, time is spent on sending messages between processors. Even if computation can he overlapped with
communication, 4 certain amount of work for setting up the message transfer remains, Therefore, 4 certain
amount of parallel inefliciency is invariably connected with (1) and (2). In general. assigning equal workload o
processors can be achieved by redistributing work during the course of the simulation. However. it has to be
realized that load balancing by itself requires computational resources.

It should be noted that with an increasing number of processors the amouni of communication increases,
which might cause a nonlinear response of the communication channels. Also, the utilization of advanced
solving strategies (see Scction 4) for complicated physical phenomena in conjunction with highly complex
geometries may show a dynamic behavior with regard to computing time per grid point. Therctore, achieving
the same workload for each processor during the computation can only be ensured by dvnamic load balancing
{scc Section 3.4). In addition, the numerical algorithm might cause a nonlinear increase in communication
demand.

3. 1. Parallelizarion strategies for CFD codes

There are basically three ways of parallelizing a code. First, a simple and straightforward approach is to
parallelize the do loops in the code. Many so-called automatic parallelizers analyze do loops and suggest a
parallelization strategy based on this analysis. This concept, however, is not scalable 1o hundreds or thousands of
processors, and results in very limited speedup [3].

Most applications in science and engineering can be described by a set of equations in some kind of solution
space. A second approach is therefore to parallelize the numerical solution process for these equations. For
example, if a matrix—vector multiplication occurs. this multiplication could be distributed on the various
processors and performed in parallel. Again, scalability 10 a large number of processors cannot be obtained.
Moreover, this technique would work only for large regular matrices. If 4 problem were represented by a large
number of smaller matrices (often the case in practice {see Fig. 17)). parallelization would be impossible.

The third approach is denoted as domain decomposition. sometimes also referred to as grid partitioning. The
idea is simple. The solution domain is subdivided into a set of subdomains (blocks) that exchange information to
update each other during the solution process. The numerical solution takes place within each domain, and thus
ts independent of the other domains. The solution space can be the actual space—time continuum, or it can be
some abstract space. For the simulation process, this space is discretized and thus is described by a set of points.
Domain decompaosition is the most general and versatile approach. It also leads to the best parallel efficiency,
since the number of points per subdomain can be freely varied as well as the number of subdomains per
processor. A large number of codes in science and engincering use finite elements, finite differences, or finite
volumes on either unstructured or structured grids. Very often, the governing physical equations arc converted
into a set of linear equations. The process of parallelizing this kind of problem is 1o decompose the physical
solution domain. Software is available to efficiently perform this process both for unstructured and structured

ClibPDF - www .fastio.com

http://www.fastio.com/

R. Winkelmann et al. | Comput. Methods Appl. Mech. Engrg. 174 (1999) 433—-456 437
grids [4]. Applying this strategy results in a fully portable code, and allows the user to switch over to new

parallel hardware as soon as it becomes available.

3.2. Domain decomposition
As pointed out in Section 3.1, domain decomposition is the most general and versatile approach for
parallelizing a CFD code. In the following the importance of domain decomposition for achieving parallel

scalability is discussed in more detail.
Today, hardware vendors are not able to produce a shared memory system with a large number of processors
(more than 128) that has good parallel scalability if the shared memory programming model is used. Therefore,

235
T
T

-
T

=t

il
LT
i

-1

LTy
t " +

Fig. 2. The surface grid for the ESA/NASA Huygens space probe. The grid comprises 561 654 gridpoints in 462 blocks. The large number
of blocks is needed because of the high degree of geometrical complexity, modeling the probe’s instruments to measure the composition of

Titan’s atmosphere in 2004 [6].

ClibPDF - www.fastio.com

http://www.fastio.com/

438 R. Winkelmann et al. | Comput. Methods Appl. Mech. Engrg. 174 (1999) 433456

as pointed out in Section 3.1, simple loop transformations and parallelization of the numerical solution process
are not appropriate for today’s grand challenge problems.

In contrast, the domain decomposition approach exhibits a high degree of parallelism. The general strategy in
the solution procedure of multiblock flow solvers is to construct a halo of cells which surround each block and
that contain information from corresponding cells of neighboring blocks. This halo of cells, updated at proper
times during the numerical procedure, allow the flow solution inside each subdomain to proceed independently.
In updating halo cells parallelism can be achieved because updates are performed locally between pairs of
processors. No global operations are necessary.

There is, however, an important aspect of this parallelization approach, namely the geometrical complexity of
the solution domain (see Fig. 2). In the following, a brief discussion on geometrical complexity is given and
how it affects parallelization. If the solution domain comprises a large rectangle or box, domain decomposition
is relatively straightforward. For instance, the rectangle can be decomposed into a set of parallel stripes, and a
box can be partitioned into a set of planes. This leads to a one-dimensional communication scheme where
messages are sent to left and right neighbors only. However, more realistic simulations in science and
engineering require a completely different behavior. For example, the calculation past an entire aircraft (sce Fig.
1) or spacecraft (see Fig. 2) leads to a pantitioning of the solution domain that results in a large number of
subdomains of widely different size, because of a certain grid topology, oplimized for particular Aow
phenomena, ie. the number of grid points in the various blocks, may be different. As a consequence, it is
unrealistic 1o assume that a solution domain can be partitioned into a number of equally sized subdomains [7].
On the contrary, the set of subdomains is unordered (unstructured) on the subdomain level, leading to random
communication among subdomains. In other words, the communication distance cannot be limited to nearest
neighbors, but any distance on the processor topology is possible (processor topology describes how the
processors are connected, for instance as a 2D mesh, as a torus or as a hypercube, etc.). Hence, the efficiency of
the parallel algorithm must not depend on nearest neighbor communication. Therefore, the parallelization of
solution domains for complex geometries requires a more complex communication pattern to ensurc a load
balanced application. It also requires more sophisticated message passing among neighboring blocks. which may
reside on the same, on a neighboring, or on a distant processor (see Fig. 3). The basic parallelization concept for
this kind of problem is the introduction of a new type of boundary condition, namely the inter-domain boundary
condition that is updated in the solution process by neighboring subdomains via message passing. Parallelization
then is simply achieved by the introduction of a new type of boundary condition. Thus, parallelization of a large
class of complex problems has been logically reduced to the well-known problem of specifying boundary
conditions.

B'°°'i 1m,]

)

rocessor 1 LU Processor P

Fig. 3. Mapping of blocks to processors for general multiblock topologies. Blocks arc asscmbled into a set of groups, where each group
contains the same number of grid points. Each group then is assigned to a particular processor. Communication then has to discern beiween
communication of blocks residing on the same processor and belween blocks that reside on a differemt processor,

ClibPDF - www .fastio.com

http://www.fastio.com/

R. Winkelmann et al. [Compur. Methods Appl. Mech. Engro. 174 (1999) 433456 439
3.3. Message passing methods

The ParNSS code [6], written in ANSI-C, used to solve the Navier—Stokes equations (Eq. (1)), uses message
passing for updating halo cells. Messages are exchanged after every iteration by using the industry standard MPI
{Message Passing Interface) library or the PVM (Parallel Virtual Machine) library. For viscous flow an overlap
of twao cells is used. However, no messages are sent across diagonals of a block. Instead. only faces are updated
and finite difference formulas are used to approximate diagonal terms, i.e. mixed derivatives.

The update of hale cells can be done with either of two message passing strategies (see Fig. 4):

» BSNR (Blocking Send, Non-blocking Receive). First, the code sets up non-blocking receives for all
incoming messages. Then, looping over all blocks for each of the six faces of a block. a message s sent to
cach fuce of a neighboring block, except waull faces.

¢ NSBR (Non-blocking Send, Blocking Receive). Here, a single loop over all blocks is used and messages are
sent as soon as information is ready. After that, tor cach tuce of 4 block. again wall faces are excepted. a
blocking receive is posted. There can be no deadlock, since the mapping between faces of neighboring
blocks is one-to-one.

For the BSNR method, the communication is separated from the computation: all the receives are posted. then
all the messages are sent. On the other hand. for the NSBR method. each message is sent as soon as it is ready.
spreading out the communication traffic in time. Thus, we could expect that the impact ol a slow communication
fabric is felt to the greatest extent for the BSNR method.

Even though the NSBR method has the advantage of spreading out the message traffic, it has a potential
vverhead in thal messages are sent as soon as they are available. meaning that they may be received before the
receiving process is ready to use them. Thus. the message passing library implementation must manage buffers
to hold the messages until the receiving process is ready.

These two different message passing strategies have been tested on two different supercomputers at the
Center of Advanced Computing Research, California Institute of Technology. namely. the 256 processor HP
Exemplar und a ‘Beowulf™ system.

The HP Exemplar system has (September 1997), 256 HP PABXX) processors running at 180 MHz. Each
processor has 256 MBytes memory and 4 Gbhyte disk. The system is packaged as sixteen “hypemodes’, where
each of these nodes consists of 16 processors in a box with 4 Gbytes shared memory and 64 Gbytes disk.
Processors within a hypemode communicate with each other at high bandwidth and with low latency via a
crossbar swilch. Processors on hypernodes communicate via CT1 (Coherent Toroidal Interface) in o ring, at a
somewhat lower bandwidth, with somewhat higher latency. This model of communication between processors is
called NUMA {Non-Uniform Memory Access).

BSNR NSBR
logp over all blodks(1o over all blodks{
exrhange halo cells sad lelo cells
1 }
loop over iteraticons{ lop over iterations{
lop over hlocks{ lop over hlocks(
campute mene o o2lls (hloddng)
} e
lop over hlods{ a7d halo cells {(non-blocking)
exdare halo olls }
1 }
} loop over blocks(
receive alo cells
}

g 4. Twuo ditlerent messuge passing strategies [or updating hale cells are shown.

ClibPDF - www .fastio.com

http://www.fastio.com/

440

Each processor of the Beowulf machine has (September 1997), 58 Intel Pentium Pro compute processors,
running at 200 MHz. Each processor has 128 MBytes memory and 3.1 Gbytes disk. The Beowulf is packuged as
a conventional PC box, with motherboard, power supply, disk. lloppy drive, ports and so on. There is a host
processar that is connected to the Internet through which users can log in. compile, and launch jobs. In addition,
edach PC is supplied with fast (100 Mbit/s) ethernet for interprocessor communication, which is routed by four

crosshar switches.

The graphs in Fig. 5 show the impact of the message passing strategies BSNR and NSBR on the parallel
efficiency of the computation. As a testcase, the inviscid flow past the Single-Stage to Orbit (X-33)
configuration at Mach 9.8 was chosen. A grid comprising 274 blocks and a total of 342 361 grid points was uscd

(Section 5.4).

R. Winkelmann et al. 7 Compuwt. Methods Appl. Mech. Engrg. I74 (1999 433-456

200 —
150 poma s .
100 ¢
!
50
—_—
” !
o
: |
o
5]
L) N
o
h—
W T
E
= s "B
4]
%,\
[~
; . s e FSprTTIoD e o
Processors
1850 = S ——— —
1650 b R
1450 S
1250 F e
1050 E =
‘s\ \\: _ 5 '
650 E =2
3 LT
%‘\ 450 - N\ \\ “ > 89
c - Ssp B
=} s K, T
3 : \5\ 6}@\ /f.es .
L 250 &
5] |
£ 1 -
B '\\
i \\5‘ b
L 11 T \\\\
Implicit Scheme e |
\\%:-e‘%\“\
50 -
16 20 a0
Processors

Fig. 5. Run times for 1 iterutions of the ParNSS code, (top) Explicit Scheme and (bottony Impheit Scheme, solving the Luler equations at
Mach 9.8 for the X-33 model. Each punel shows computing times for both Beowulf and Exemplar for the two message passing schemes. [n
both cascs, the Exemplar is roughly two times fuster than the Beowult machine. We note that the timestep for the implicit scheme may be

much larger than for the explicit, also that the implicit step may decrease the residual by moch more,

ClibPDF - www .fastio.com

http://www.fastio.com/

R. Winketmann ¢t af. | Conpui. Methods Appl. Mech. Engrg. 174 (1999) 433-456 441
3.4, Strategy for dynamic load balancing

For some applications the workload per processor can be estimated or even analytically determined in a
preprocessing step before the simulation is started. It the workload does not change during the course of the
computation static load balancing is sulficient. However, the majority of applications in computational science
and engineering show a more complex runtime behavior, necessitating some kind of dynamic load balancing to
provide the same workload on each processor ut all times.

The goal of dynamic load balancing can be stated as follows:

Given a collection of tasks performing a computation and a set of processors on which these tusky are to be
executed, find the mapping of 1asks to processors that minimizes the run time.

As will be stated in Section 4 the numerical solution strategy is based on the idea of a varying coupling
strength among grid points during the course of the solution in order to achieve numerical scalability. However,
this approach results in an algorithm that is not parallel scalable. because of the load imbalance that is caused by
the dynamic behavior of the implicit GMRES algorithm. Therefore. in order to achieve both numerical and
parallel scalability, it is necessary to implement dynamic load balancing in the Navier-Stokes flow solver.

Dynamic load balancing in the ParNSS code has been achieved through the following five stages 18]

(1) Load evaluation. Estimates of the processor’s workload must be provided to determine the current load

imbalance. In the PurNSS code the runtime behavior of each block 1 monitored during an iteration.

(2) Profitability. Once runtimes for cach block have been collected via global communication (see Fig. 8),

the load imbalance is computed. If the cost for a load balancing step is lower than the current imbalance,
load balancing actions are performed.

(3) Selection of moveable tasks. Flags are altached w cach block that constrain the task selection process.

First, blocks are marked as moveable or non-moveable, Second, blocks are automatically deactivated, i
the local residual of this block compared to the global residual is below a certain limit. However, a
deactivated block is still updated via message passing, and if a solution change above a specified
threshold propagates into a deactivated block. this block is re-activated. Only those blocks which are both
moveable and active are distributable.

(4) Task mapping decision. We now compute which processor should be responsible for each distributable

block; the details are in Section 3.4.1.
(5) Task migration. In a loosely synchronous communication. the distributable blocks are moved to their new

typedef struct {
char BlockName[32];
int Bleock;
int I,J,K; /* number of points in each direction */
int NodeId;/* processor ID on which block resides*/
int NumOfBc;
int intbe, *ibc;
bcond *bhc;
coord ***C;/* pointer to grid points */
Qvector ***g, ***D:/* Flux vector Q and Delta Q */
double timestep; /* local timestep */

double comptime;/*number of seconds needed for last
iteration */
int active; /* block is active{l) or non-active(0)*/
int moveable;/*block is movable to other
processor(l) or non-movable*/
} block;

Fig. 6. The topology of the solution domain is described by the data structures bleck and face.

ClibPDF - www .fastio.com

http://www.fastio.com/

442 R. Winkelmann et al. | Compur. Methods Appl. Mech. Engrg. 174 (1099) 133436

typedef struct {
int I,Istart,J,Jstart;
int IU,IstartU,JU,JstartU;
int MyFace,MyPart,MyBlock,MyType,MyInd,
nnode, nblock, nface, npart, op,nind;
char NBlockName([32];
char XYZchar;
int scutl, scut2, sgcut, rcutl,rcut?, rgcut;
int stype,rtype;
double *inbuf; /* message buffer */
double *outbuf; /* message buffer */
#ifdef MPIZ
MPI_Request send request;
MPI_Request receive_request;
MPI_Status receive_status;
#endif
} face;

Fig. 7. The topology of the solution domain is described by the data structures Blocx and face,

homes, and the face structures are updated so that each block knows the correct processor for ils
neighbors; the details are in Section 3.4.2.
By subdividing the load balancing process into single stages, a high degree of flexibility is obtained for
analyzing different strategies in each stage.

344, Task mupping decision

Currently, we use a simple bin-packing algorithm, designed to produce a reasonable load-balance only. but
neglecting the communication cost. This is because much of the numerical operations take place in a
block-implicit scheme, where the ratio of communication to computation cost is very small [7].

The computation of the mapping takes place serially, since it is easier that way. and it takes such a small time.
The workload resulting from the non-distributable blocks is computed for cach processor, providing a workload
number for cuch processor. The distributable blocks are sorted in decreasing arder of their workload to form a
list. The largest block is removed from this list and assigned to the processor with the smallest workload,
thereby increasing the workload. This is repeated until there are no more blocks in the list.

When the new mapping of blocks to processors is complete, the parallel efficiency of the new map is
estimated; only if this is sufficiently better than the previous efficicncy does the expensive task migration
actually take place.

3.4.2. Task migration

This section describes how blocks are sent to their new processor, updating the communication topology to
ensure the correct block boundary exchange for the next iteration.

Each block to be moved is serialized, including grid point coordinates, numerical solution, message buffers
and flags, and all its memory is freed on the source processor. The sets of messages are sent to the respective
destination processors, and finally we need blocks that share a face to know each others processor ID; this is
stored in the data structure face.

This is done using the idea of the Voxel Database 9], which is, in essence, a way to associate data with
geometric points. A Voxel Database allows a distributed application to share data, using a key based on
geometric position. If one processor writes data “at coordinates (x, v, 2}, then another processor can inquire if
there is any data at that position. Processors can also write data into these shared, geometically-positioned
memories in a weakly-coherent fashion,

In this case, we use a Voxel Database to store lists of processor [Ds, which are positioned at the centers of the
faces of the blocks. We first loop over all such faces, putting the processor I} in the list associated with the
position of the center, then synchronize the database. Then we can look at the list associated with a given face,

ClibPDF - www .fastio.com

http://www.fastio.com/

R. Winkelmann et al. | Compur. Methods Appl, Mech. Engrg. 174 (1999) 433-456

Processor 2 Processor 3 Processor P
Block N Block N Block N
Block ... Block ... Block ...
Block 2 Block 2 Block 2
Block 1 Block 1 Block 1
léompute time J :éompute time léompute time

-active flag
-moveable flag

-active flag
-moveable flag

-active flag
-moveable flag

443

Each processor sends the compute
time and the status flags of its
blocks to the master.

N

Processor 1 {Master)

Block N
Block The master gesnerates a new block
to procasgor mapping and performs
Block 2 a broadcast (see Fig. 9).
Block 1
:éompute time

-active flag -
-moveable flag

Fig. 8. The topulogy of the multiblock grid 1s described by the set of objects of tvpe block (see Fig. 6). In addition, for each block there is
a set of up to 6 faces described by object type face (see Fig. 73 Bach processor holds the entire grid topology information.

its length 1s one for a boundary face, and two for a face that is shared with another block, i.e. an interior face. In
the latter case. one of the processor IDs in the list is the processor ID of the block that shares the face, which is
what we wanted o find. A more complete description of this process is given in [17].

The Voxel Database can be used in a more general way to dispense with connectivity files for multiblock
grids. Given only the geometric coordinates of the vertices of the blocks, we can synthesize the connectivity of
faces, edges, and vertices, similarly to the above.

4. Numerical scalability for large scale CFD applications

In this section we describe how numerical scalability can be achieved. It is believed that the successful
solution of the large scale parallel N-S equations can only be performed by combining grid generation, domain
decomposition and numerical solution scheme. Each of the three elements has its own unique contribution in the
numerical solution process. However, in the past, these topics were considered mainly separately und their close
interrelationship has not been fully recognized.

ClibPDF - www .fastio.com

http://www.fastio.com/

444 R. Winkelmann et al. | Comput. Methods Appl. Mech, Engrg. 174 (1999) 433 436

All processors: Send runtime and status flags of own blocks
to master.

Master: Determine load imbalance.
Master: Compute new mapping of blocks to procesasora.
Master: Broadcast new mapping to all processors.

All processors: Loop over all blocks of 8D n=1,...,N

if (n is mapped to a new processor)

action on the scurce processor:
-gend block data to destination processor
-free mamcry used by this block
-sat new processor id

action on the destination processor:
-allocate mamory for arriving block
-receive block
-set new processor id

All procesasors: For sach face of each block dstermine processor id
of neighboring block using global combine functiom.

Fig. 9 The sequence of cammands illustrates how dynamic load balancing s implemented in the ParNSS code,

In this section domuin decompeosition along with the manerical solution scheme will be discussed. Grid
generation will not be discussed here {see instead [10.11]); but it should be noted that grid generation has a
major influence on the overall accuracy of the solution and the convergence properties of numerical methods

In the following, strategies arc considered for elficiently solving the system of linear equations that arises
from the discretized Navier—Stokes equations.

ldeally, numerical scalability would mean that computing time required 1o solve a problem is linearly related
to problem size. Provided parallel scalability is achieved, the solution time for a problem would remain constant
if hoth problem size and the number of processors increase at a fixed ratio. For example, il a system of linear
equations of size N is to be solved and a direct method like LU-decomposition is used, the number of floating
point operations is O{N"), which is far from being numerically scalable. There are also many iterative solution
procedures for which the convergence speed is of order O(h”), h being a measure of the so-called grid spacing.
simply denoting the distance between two neighboring grid points, The convergence speed is a measure of how
fast the residual in the solution is reduced. For small A, many of the iterative solution procedures stall |12]. For
an equidistant mesh in 3D, & =N"""". The number of floating point operations to reach a certain convergence
level is then of order OV’ '} for O(N) denoting the number of operations per iteration. Therefore, in order to
obtain a numerically scalable algorithm additional measures have to be taken.

Numerical experience has shown that a single numerical scheme has varying numerical efficiency during the
course of the solution process. The novel feature presented in this article is to apply a sequence of numerical
strategies, and to establish criteria for switching over to a different numerical scheme as soon as the present
scheme becomes numerically inefficient.

The Tangled Weh approach is a combination of the following techniques that will be briefly discussed below:

o Grid seguencing. This consists of using a set of nested grids. analogous o multigrid methods. There is a
sequence of grids, each with eight times as many points as the last. and we loop through these from
coarsest 1o finest, interpolating the final solution on one grid as the initial solution on the next finer grid. At
the same time coarsening is used to compress the Eigenvalue spectrum (GMRES technique).

» Domain decomposition. This has several benefits. First. it allows the construction of completely flexible
topologies which, in turn, allow for grid point clustering and grid optimization. Second, the inversion of a
set of small matrices, arising from the implicit solution of each block, is faster than the inversion of a single
large matrix. Third, for each block the implicit solution is obtained by the so-called Dynamic GMRES
technigue that might exhibit a different numerical behavior because the Krylov basis may be of different
size. This may lead to load imbalance and limit parallel efficiency. requiring dynamic load balancing
(Section 3.4). Fourth, the sparse linear system to be solved with GMRES requires an efficient and effective
preconditioner. Domain decomposition is one technique to reduce the condition number [13].

ClibPDF - www .fastio.com

http://www.fastio.com/

R. Winkelmann er al. | Comput. Methods Appl. Mech. Engrg. 174 (1999) 433-156 445

o Aduptive coupling strength. The dynamic coupling strength approach is shown in Figs. 10 and 11 and
accounts for the fact that coupling of grid points should increase during the computation.

e Dynamic load balancing. As noted above, there are several reasons for load imbalance, including the
unequal number of iterations of the GMRES linear solver in the block-implicit phase of the solution. There
are other reasons for load imbalance, the most important being the flow physics and the local grid density.
It may also be necessary to utilize a different set of physical equations within different blocks, depending
upon the prevailing flow features.

o Block activationtdeactivation. Subdomain or block activation or deactivation is where the flow is
converged in some parts ol the computational domain, but not in others, so il is natural to concentrate

Explicit Method Quasinewton Method Newton’s Method

Approximate J Approximate J J:=df/du
as diagonal as block-diagonal “" _1
using B blocks u<-u-J°° f(u)

Cost: ¢ Cost:
N independent updates 9% e :
fN w?riablc% P B independent linear ~ Linear system, size N
OCh ea) systems of size N/B Expensive
Bencﬁltj' Benefit: Bf“ef“: Sual
" . Log residual is reduced L-Og residual 18
Log remdgal is reduced by g()(l /NB) doubled (decrease in
by O(1/N4) (constant decrease per log residual is log
(constant decrease per step) residual)
step)

Fig. 10. The three plots depict the coupling strength (black area) for solving a lincar system of equations, described by matrix J. Coupling
strength is dynamically increased during the course of the computation. N denotes the size of the system. B is the number of blocks.

Explicit (B=N) a0 2o B o
then £ 3SE As=
Block-Implicit (B large) = g8 [€8
then 8 82 |25,
Block-Implicit (B small) &0 &y | w0y F
then g 24 |38 E‘
Newton (B=1) pel Bo E=STR
"Root Polishing"' Ve g VEE |82

Fig. 11. The relatians between coupling sirength, computing time per grid point, and Herabons needed to reach a steady state s presented. B
is the numbcer of blocks und & denotes the problem size, e.g. the number of gnd pomts,

ClibPDF - www .fastio.com

http://www.fastio.com/

446 R. Winkelmann et al. ! Comput. Methads Appl. Mech, Engrg. 174 (1999} 433456

resources only where necessary. The activation and deactivation is steered by both the change in the
numerical solution within the block and by the amount of change received by message passing.
The important feature is that these acceleration techniques are applied in combination for the sake of
synergistic effects.

4.1. The Navier—Stokes equations as a set of ODEs

We distinguish space discretization from time discretization. The space discretization produces a set of
Ordinary Differential Equations:

dUv
o =fl), (13)

and we assume the existence of a steady state U * such that f(/#) = (). Discretizing time, we approach U # by a
sequence of explicit or implicit steps, repeatedly transforming an initial state U” into a final state U *.
The explicit step is, for example, the two-stage Runge-Kutta
Ut =U"+ U + U™ A) A (14)

As the implicit time step a backward Euler is used
UnH:Un +f(U“+1)Af. [lS)

The finul step, i.¢ altaining the steady state directly via Newton | 14,15], can be thought of as an implicit step
with infinite Ar: Solve fil7) = 0. There is also a weaker version of the implicit step, which we might call the
linearized implicit step, that is actually just the first Newton iteration of the fully nonlinear implicit step:

U'''=U"+[1 —dffdl At ‘fU™ At (16)
The resulting linear system is solved by the GMRES method [16].

4.2, Domain decomposition for eigenvalue spectrum compression and preconditioning

A major question arises in how the decomposition process affects the convergence rate of the implicit scheme.
First, it should be noted that the N-S equations are not clliptic, unless the time derivative is omitted and ineria
terms are neglected {Stokes equations). This only occurs in the boundary layer when a steady state has been
reached or has almost been reached. However, in this case the Newton method will converge quadratically, since
the initial solution is close to the final solution. The update process via overlup boundaries should therefore be
sufficient. In all other cases, the N-S equations are dominated by hyperbolic phenomena. Hence, a full coupling
of all points in the solution domain would be nonphysical, because of the finite propagation speed, and is
therefore neither desirable nor necessary.

Continuing the discussion of convergence speed, it should be remembered that for steady state computations
implicit technigues converge in fewer steps than fully explicit schemes, but each step takes more computing.
The former are generally more computationally efficient, in particular for meshes with large variations in grid
spacing. However, since a full coupling is not required by the physics, decomposing the solution domain should
result in a convergence speed up. This is due o the inversion of a set of small matrices being faster than the
inversion of the single large matrix, although boundary values are dynamically vpdated. In the preconditioning
process used for the Conjugate-Gradient technique, domain decomposition is used to decrease the condition
nomber {ratio of largest to smallest Eigenvalues) of the matrix forming the left hand side. derived from the
discretized N-5 equations. In other words, the Eigenvalue spectrum is compressed because the resulting
matrices are smaller. It is shown in [16] that this ratio is a measure of the convergence speed for generalized
conjugate residual algorithms. Having smaller matrices, the condition number should not increase; based on
physical reasoning it is to be expected that, in general. the condition number should decrease. On the other hand,
if the decomposition leads to a blocksize of 1 point per block. the scheme is fully explicit and hence
computationally less efficient than the fully implicit scheme. Therefore, an optimal decomposition topology
must be selected and most likely depends on the flow physics and the type of implicit solution process.

ClibPDF - www .fastio.com

http://www.fastio.com/

R. Winkelmann et al. { Comma. Methods Appl. Mech. Engrg. 174 (1999%) 433456 447

However, a number of numerical experiments has been performed with the ParNSS code, clearly demonstrating
the convergence speed up. Block numbers have been varied from 2 to 1024 in 2D (sce Tuble 2) and from 6 1o
384 in 3D (see Table 3). vsing an otherwise identical gnd.

5. Results using the tangled web approach

[n this section we present results attained by using the Tangled Web Approach on four different examples:

o A Mach 1.7 Luler flow over the NACAOOL2 airfoil.

s A Navier-Stokes computation for the NACAOGL2 uirfoil. The viscous laminar flow was computed for an

angle of attack of 7 degrees at Mach 1.7 for a Reynolds number of 5% 10",
» Flow around the ESA/NASA Huygens space prohe which is scheduled o enter Titan™s- atmosphere in
2004,

o A modificd X-33 vehicle. serving as a pratotype for the new generation S8TO spaceplane. The LBuler flow

al Ma 9.8 was computed at an angle of attack ot 30°.

For all 1estcuses the parallel numerical strategy of Section 4 was applicd. Computations were performed on a
10 processor Silicon Graphics Power Challenge X1 at Center for Logistics and Expert Systems in Germany. as
well as on the HP Exemplar and a Beowulf machine at the Center of Advanced Computing Rescareh, California
Institute of Technology.

S NACA airfoil imviseid flow

The Euler simulation was carricd out on o 2 block grid with a total of 38 (KK grid points. The etfects of both
domain decomposition and grid sequencing were investigated and are reported i the following two sections.
The original grid was split into 2, 32, 1200 128, 256, 480 and 1024 blocks. In addition. three coarse grid-levels
were extructed trom this 2 block grid.

S 11 Accelerution by grid sequencing

In Tuble 1 we show the speedup obtained by grid sequencing using the two block grid. The last row of Tuble
1 has the scaled computing time of 1. Adding up the computing time on Wl grid levels results in a speedup value
of 1.68.

3.1.2. Acceleration by domain decomposition

A similar analysis was done for the NACAO0012 airfoil investigating the ctfect of domain decomposition (see
Table 2). The same grid with 48 000 points was used. The Euler solution was computed by the implicit GMRES
algorithm for & Mach number of 1.7. The computation ended after the residual dropped by 10 orders of
magnitude, The optimal speedup was obtained for 480 blocks (see Section 4.2).

3.1.3. Acceleration by adaptive coupling

A combination of the explicit Runge-Kutta scheme and the implicit GMRES scheme. termed adaptive
coupling, was used for the Euler computation of the NACADDI2 airfoil (see Fig. 12). A set of three grids,
comprising 8. 32 and 128 blocks was used.

Tihle |
Results Tor solution acceleration by using multilevel grids for o 48 000 point YACAOO12 girtoil. The Huler soltion was computed by
implicit GMRES Tor a Mach number of 1.7, The algorithm switched to the next finer grd after the residual dropped to 10 " an the course

grid level. A speedup ol 163 1 obtained by this technique

Grid level Girid paints Staled computng time
3 §i2 0.0026
2 R 00150
| 12322 01200
0 45 00 00,4600
0 (oo grid sequencing) 48 (N0 1.0000

ClibPDF - www .fastio.com

http://www.fastio.com/

448 R. Winketmann et al. | Comput. Methods Appl. Mech. Engrg. 174 (1999) 433-456

Table 2

Results for solution acceleration by variation of block number for a 48 000 point NACAD012 airfoil. The Euler solution is computed by the
implicit GMRES algorithm for a Mach number of 1.7. The computation stops after the residnal drops to 147 '". The optimal speedup is
ohtained for 480 blocks, resulting in a speedup of 2.6 ax compared to the 2 block grid

Number of blocks Number of points per block Number of iterations Speedup
2 24000 253 1,00
32 1560 305 1.55
124} 435 317 2.33
256 213 333 273
480 119 349 296
1024 ol 380 292
10 T L} L] L L) L L) L} L]
&
1 3
W
EFE F:} Clt-.
Clt,
0.1
;Q ™~
g %
g oo} 9 g
: s a1 2
=2 ?c cnt
]
0.001
L8]
L
0.0001 } ,%D .
/5]
Block ligit, 1
HeTiei
p
l1e-05 1 1 1 1 i 1 A
0 5 10 15 20 25 30 35 40 45 50

Node-Hours

Fig. 12. Solution acccleration wsing adaptive coupling, The computation was done for s NACAYY12 airfoil.

In stage 1 (see Fig. 12), four different computations are performed. An explicit scheme is used on an 8 block
grid, and the implicit GMRES scheme is used on 8, 32 and 128 blocks. In each computation the residual is
reduced by two orders of magnitude to 0.1. As can be seen from Fig. 12, the explicit scheme is fastest. In stage
2, we try to reduce the residual from 0.1 to 107 Now the situation has changed completely, because the
explicit scheme stalled. The fastest solution is delivered by GMRES on the 128 block grid. In stage 3, the

ClibPDF - www .fastio.com

http://www.fastio.com/

R. Winkelmann et al, [Comput. Methods Appl. Mech. Engrg. 174 (1999) 433456 449

residual is to be further decreased to 10 °. Again, the same phenomenon as in stage 2 is observed, namely,
increasing the coupling strength results in solution speedup. In other words, the GMRES solution on 8 blocks is
fastest. Obviously, adaptively increasing the coupling strength at each stage leads to a decrease in overall
computing time.

5.2 NACA airfoil viscous flow

The Navier-Stokes computation was performed on a sequence of grids and a varying number of blocks. The
original grid was a 26 block (27 120 cells) grid that was turther split into 40, 68 and 272 blocks. These grids had
exactly the same number of grid cells and the same grid point coordinates. Furthermore, two coarse grid-levels
were extracted from the 26 block grid comprising 6780 and 1712 grid cells, respectively. The left picture in Fig.
13 shows the 26 block fine grid. The multiblock topology has been chosen o automatically cluster grid points at
the airfoil surface. The right plot in Fig. 13 depicts the Mach number contour plot of the steady state solution.

3.2.1. Acceleration by grid sequencing

The computation was started on the coarsest grid. The residual was reduced by about 6 orders of magnitude
by applying first the explicit scheme. followed by the implicit GMRES scheme. The solution on this grd was
then used as initial solution to the next finer grid. The same strategy was used on each grid level. until the steady
state solution on the fine grid was obtained. The grid sequencing approach delivered a speedup of 1.25 in
comparison to a computation using the fine grid only. Table 3 summarizes the results of the simulation.

5.2.2. Acceleration by domain decomposition

The influence of domain decomposition as a preconditioner for the implicit GMRES solver is illustrated by the
results in Table 4. Here, computalions on 26, 40, 68 and 272 block grids were done. All runs were based on the
same paralle]l numerical strategy, namely. using first the explicit scheme followed by the implicit GMRES
scheme. Again, the residual is reduced by about 6 orders of magnitude. The decoupling of grid points by
splitting the solution doemain into smaller blocks reduced the time for each GMRES iteration, bul required a
larger number of iterations. For this configuration the optimal speedup was obtained for 68 blocks.

&

3 \:\\"‘\\'\:f\‘:\\‘}\‘::\\‘:::‘\\\\\\‘\‘\\\\\{{%\s“

e
e
A S e
T
et
R

o I ey Sy Oy
e P T IL AR T AL T AT
it e 0t

7%
,@"'b”l;"'l;‘?;"i"‘. LN

Fig. 13. NACAOUI2 airfoil. Navier Stakes grid and Mach number contour plot. The fing grid consists of 26 blocks and some 27 000 cells.

Table 3

Results for salution scceleration wsing muliilevel grids for a 27 000 cell NACAOGL2 airfoil
Grid level Gnd points Computing time (s}

2 . 2156 55

| 7638 335

0 I8 %10 nn

0 (no grid sequencing) 28 310 3269

ClibPDF - www .fastio.com

http://www.fastio.com/

450

Table 4

Results for solution acceleration by variation of block number for a 27 000 cell NACAO012 airfoil. The Navier—Stokes solution is computed

by using both the explicit and the implicit GMRES scheme

R. Winkelmann et al. | Comput. Methods Appl. Mech. Engrg. 174 (1999) 433—-456

Number of blocks Number of iterations Implicit time Speedup
26 148 2623 1.00
40 153 2202 1.19
68 161 2066 1.27

272 243 2201 1.19

5.2.3. Acceleration by adaptive coupling

Grid sequencing, in combination with adaptive coupling, was used in the Navier—Stokes computation of the
NACAO0012 airfoil (see Fig. 14). First, a converged solution was computed on the 26 block coarse grid which

Initial Solution:

Stage 1:

Stage 2:

Stage 3:

68 blocks grid
total ime: 6325

68 blocks grid
total time: 7825

Computing time for a combination of grid sequencing and adaptive coupling

Computed Residual (CRY: 10710

40 blocks grid
total time: 6425

26 blocks grid
total ime: 7495

40 blocks grid
total time: 7565

68 blocks grid
fotal ime: 1008s

40 blocks grid
total time: 10055

26 blocks grid
total time: 760s

cr 104

CR10°°

CR 1077

thick-lined boxes show the optimum sequence: in stage 1. the 68 block computation is fastest. However, in stage 2 the 40 block computation
is fastest while in stage 3 the 26 block grid gives the lowest computing time. This clearly shows the speedup achievable by the adaptive
coupling strength strategy.

Computing time without grid sequencing

Explicit

26 blocks gid

total time; 5938s

The 26 block explicit computation
is dlightly faster than the 40 and 68
block computations because of
reduced communication overhead.

Fig. 14. Grid sequencing, in combination with adaptive coupling was used in the Navier—Stokes computation of the NACAQO12 airfoil. The

ClibPDF - www.fastio.com

Implicit

68 blocks grid
total ime: 2120

It should be noted that the 68
block implicit computation i
faster than the 26 and 40 block
computations.

http://www.fastio.com/

R. Winkelmann et al. | Comput. Methods Appl. Mech. Engrg. 174 (1999) 433—-456 451

T=TTTTT

=TT

static

T

Residual

T

dynamic W

T

0 500 1000 1500
Wall clock Time [s]

Fig. 15. The graph shows the influence of dynamic load balancing on the total computing time for a Navier—Stokes computation of the 68
block NACA0012 airfoil. A total reduction of 7% in computing time was achieved.

Fig. 16. The Mach 3.1 Euler flow was computed for the Hugyens Space Probe. A 462 block grid comprising 561 654 grid points was used.
The modeling of the instruments on the windward side of the probe should be noted.

Euter Simulation for
- Mach Number Contour
- 256268 Celis, 274 Blocks

Fig. 17. The Tangled Web approach was used to compute the inviscid flow at Mach 9.8 for this highly complex SSTO configuration. The
grid comprises 274 blocks (subdomains) of widely different size with a total of 342361 grid points. The grid is almost orthogonal

everywhere and grid point clustering does not extend into the far field. This is a result of the topology chosen.

ClibPDF - www . fastio.com

http://www.fastio.com/

452 R. Winkelmunn et al. | Comput. Methods Appl. Mech. Engrg. 174 (1999) 433456

served as the initial condition for the computations in stages 1 to 3. It turns out that the combination of grid
sequencing and adaptive coupling results in substantial speedups in comparison with fully explicit or block
implicit solutions on the fine grid only. The speedups are 5.91 and 2.11, respectively. [t should be mentioned
that a further reduction in the total execution time will be possible using dynamic load balancing.

5.2.4. Acceleration by dvnamic loadbalancing

The 68 block grid of the NACAOQOI2 airfoil configuration was used to show the influence of dynamic
loadbalancing on total run time for the Navier-Stokes computation on 9 processors of the Silicon Graphics
Power Challenge XL. The two curves in Fig. 15 show the comparison between runs with and without dynamic
loadbalancing, Both simulations were performed using the same numerical strategy. A reduction of 7% in
compulting time was achieved. While the two strategies require the same resources for the explicit part of the
computation, dynamic loadbalancing reduces the cost of the implicit part by 10% in this example. A higher
pereentage for 3D computations is expected.

3.3 Huygens space probe flow simulation

In Fig. 16 a Euler flow solution for the ESA/NASA Huygens Space Probe is shown. This probe was luunched
in 1997 and will enter Titan™s atmosphere in 2004 measuring its composition. The instruments on the windward
side have been modeled to simulate microaerodynamics effects during the entry phase.

531 Acceleration by domain decomposition

Table 5
Convergence behavior for 31 Huygens Space Probe isee alse fag. 2). Speedup resulting from employing block decomposition as a
preconditioner. The results clearly demonstrate that this strategy 1s successful for large 3D grids

Nurnber of blucks Number of points per bluck Number of iterations Scaled computing time
6 12 167 350 1.00
48 1728 351 .53
344 343 420 0.59

3.4, Simulation for an SSTO configuration

The SSTQO testcase is similar to the X-33 Lockheed Martin configuration (Fig. 17). The Euler equations are
solved for a Mach number of 9.8 at angle of attack of 40°. The highly complex 3D geomelry is modeled by 274
blocks using 256 268 grid cells. The large number of blocks is caused by the high degree of geometric
complexity, The surface grid together with parts of the symmetry plane and the outer boundary are shown in the
left plot of Fig. 17. The grid is mirrored about the symmetry plane for visualization purposes. For the
computation only half of the vehicle is simulated. The right picture in Fig. 17 shows the Mach number contour
plot in the symmetry plane. The surface of the vehicle i1y shaded.

S.4.1. Acceleration by grid sequencing

The influence of grid sequencing on the total compuling time is given in Table 6. The Euler sclution is
compuled by the explicit scheme. If grid sequencing is applied, a total of 605s + 5027s = 5632s is needed to
obtain the steady state solution that has to be compared with the 7166 s needed for a computation on the (ine
grid only. Thus, a speedup of 1.43 is achieved. For this computation the residual is reduced by 6 orders of

Tahle 6

Results for solution acceleration by using multilevel grids for the modified X-33 SSTO configuration
Grid level Cells Computing time ($)

1 34196 65

0 2560 268 5027

O (no grid sequencing) 256 268 7166

ClibPDF - www .fastio.com

http://www.fastio.com/

R. Winkelmann et al. | Comput. Methods Appl. Mech. Engrg. 174 (1999) 433-456 453

Table 7

Results for solution aceeleration by variation of block number for the modified X-33 88T configuration
Number of blucks Number of cells Computing time 1n 5 Speedup

274 34 196 1223 100

331 34196 1264 097

magnitude on both the coarse and the fine grids. Only two gnid levels are used. because the next coarser grid
would comprise about 4600 cells and thereby would no longer be sufficient to represent the surface geometry of
the vehicle.

342, Acceleration by domain decomposition

A 331 block grid was generated from the 274 block grnid by splitting larger blocks into sub-blocks. It should
be noted that both grids have exactly the same number of cells as well as identical coordinates. However, the
number of hale cells is larger for the 331 block grid. Hence, more communication occurs on the network which
makes the vpdate of the halo cells somewhat more costly. Two numerical experiments were carried out (o
illustrate the influence of varying coupling strength for this configuration. First, the Euler flow was computed for
the coarse 274 and 331 block grids using the explicit scheme to provide a good starting solution for the implicit
GMRES algorithm. The steady state solution was then obtained by the implicit GMRES algorithm in
combination with dynamic load balancing. Table 7 gives the results for this comparison. Only minor speedup
was observed following the increase of the number of blocks from 274 to 331.

5.4.3. Paralle! efficiency

Results for parallel efficiency are given in Fig. 18. An almost ideal speedup for the 274 block grid of the X-33
configuration is obtained on the 10 Processor Power Challenge XI.. The explicit scheme was used to measure
the performance of the message passing. It should be noted that the ratio of computation 0 communication is
lower for the explicit than for the implicit scheme, resulting in a better parallel scalability for the implicit
scheme. The load balancing algorithm explicitly takes imo account that a mixture of 75 Mhz and 90 Mhz RE000
processors is used. The coarse mesh has a total number of 256 268 celis. The fine mesh was generated by
doubling the number of cells in each direction. Hence, the total number of cells is 2050 144,

3.4.4. Dynamic block management based on residual values

The rate at which the flow field changes during the course of the computation is different for individual
blocks in a multiblock grid. In hypersonic flow computations it is commaon practice to use freestream conditions
as initial solution. This means that during the ficst few iterations flow variables are changed only in blocks with

or
B' tdeal Speedup
! Speedup on coarse mesh
7F Speedup on fine mesh
9.65
3 F
$ s
T
o 5
o) af
3F
:
1‘..-..A..I...l\..l
2 4 6 8 10

Processors

Fig. 18. Parallel effictency of explicit X-33 computation on [0 processor Silicon Graphics Power Challenge XL The speedup is almost
linear.

ClibPDF - www .fastio.com

http://www.fastio.com/

454 R. Winkelmann et el | Comput. Methods Appl. Mech. Engry. 174 (19991 33456

Residuals
of
R
a0
R
a®
a
-
N
N
L
a
a
"
o
o

10
LI 0 ﬂu"’h: . g 2= ° b fmafa®a g a oot
o
w7 o o -
14
10 = o e 5 s

16"

;18 L i . - 1
10 o 100 200

Block number
Fig. 19, The figure shows the distribution of the residual values morm ol the Auny seesus block nomber for the 274 block X-33
conliguration when the solution is close to convergence. The residuals among blocks difter by up to 13 orders ol magnitude. By switching
ol those blocks laving a low residual value, computation cost can be reduced substamtially, The PardsS code amtomatically determines
thuse Blucks o be switched onfoll durmy the computation, Dvnamic load balancing s used o provide an equal worklowd fur cach

pl'\ll'l‘f“».\()!'.

physical boundary conditions, e.g. wall, inflow. er outflow conditions. For this reason, only these blocks need 1o
be updated. It would not make any diflerence if all other blocks were switched ofl. However. these deactivated
blacks still need W be involved in the update pracess via block bounduries. Using the update information they
can delermine whether or not to activate themselves. On the other hand, active blocks are deactivated il their
lucal residual is much smatler than the global residual and if no sufficient change in the solution is transported
across block boundaries.

First investigations have heen made to implement this dynamic behavior into the ParNSS code. Figs. 19 and
20 illustrate this dynamic behavior for the SSTO vehicle simulation,

o r

Fig. 20. The 12 plots illustrate the dynaunic behavior of @ ParkSY simokition with repard 1o dynamie activation and deactivation of hlocks

during a ron.

ClibPDF - www .fastio.com

http://www.fastio.com/

R. Winkelmann et al. | Comput. Methods Appl. Mech. Engrg. 174 (190) 433456 455

The first row of plots in Fig. 20 shows all of the blocks that are active in the beginning of the computation. At
this stage, only those blocks that have at least one fixed boundary face are active. During the course of the
simulations additional blocks are turned on, because information propagates from active blocks into non-active
biocks. Towards the end of the computation (Fig. 19) the residual in some of the blocks indicates that a
steady-state solution has been reached, automatically switching off these blocks, while other blocks have not
converged. Finally, almost all blocks are switched off and the computation is stopped.

6. Conclusions and future work

In this article a strategy has been presented to achieve both parallel and numerical scalability for the solution
of the Navier—Stokes equations with complex flows in complex geometries. The sirategy consists of using
numerical and computational accelerators such as grid sequencing, domain decomposition, adaptive coupling,
dynamic load balancing and block deactivation.

The PurNSS Navier—Stokes code has been used to demonstrate paraliel scalability for these test cases, as well
as the scalability of the acceleration strategies.

PurNSS has also been used for numerical scalability studies, by implementing the Tangled Web collection of
acceleration strategies. We computed Euler and Navier—Stokes airfoil flows, simulations for the Huygens space
probe and an SSTO configuration. In each case. speedups of 1.5 to 3 have been obtained, and we have shown
that combining these strategies according (o the Tangled Web methods multiplies the speedups, as expected.

Heuristic algorithms have been used to increase the adaptive coupling of grid points during the solution
process. In the next stage, a more formal approach will be taken to forecast or estimate the condition number to
improve the adaptive coupling strategy. These kinds of automatic transitions between the numerical strategies
form the core of our luture rescarch: deciding when to change o a coarser or finer grid, when to split blocks,
when to change from explicit to implicit schemes, when to do load balancing, which blocks should be active.
Further ahead, we hope to dvnamically switch between physics modules. with or without turbulence, with or
without chemistry or ionization physics.

The dynamic load-balancing strategy was one of the most difficult to implement, both conceptually and
technically, yet the speedup was only 1.07: we believe that this is because the test-cases are too simple. Since
the cost of doing the dynamic load balance is roughly constant. and the benefit increases with workload
imbalance. then the greater the imbalance. the greater the speedup. The load-imbalance is not as shamp as it
would be, for example, with strong shocks moving through the fluid, with the great disparity in length scales
characteristic of complex flows, or with chemistry and turbulence models being switched on and off. Dynamic
load balancing for three-dimensional test cases will be investigated. too. Additional numerical experiments tor
large 3D examples will be performed to demonstrate the viability of the Tangled Web approach.

We are also working on an environment for distributed computing on a client-server basis as well as an
internet based environment for integration of multidisciplinary codes. Investigations are being conducted on the
use of Java threads to boost utilization of parallel resources. and on leveraging ParNSS to a distributed,
collaborative design tool.

Acknowledgments

The authors are grateful to Prof. Mark Cross, University of Greenwich, London. for numerous stimulating
discussions. The authors are particularly grateful to Yang Xia, CLLE for providing the complex grids used in this
article. The continuous support by Jean Muylaert and Martin Spel, ESTEC, ESA, Noordwijk, The Netherlands,
is gratefully acknowledged. This work was partly funded by the Ministerium fiir Wissenschaft und Kultur,
Niedersachsen, Deutschland, AGIP Projekt F.A.Nr. 1997.262.

References

[1])L, Gustayson, G.R. Montry and R.E. Benner. Development of parallel methods for a [0249-processor hypercube, SIAM 1L Sei. Stat.
Comput. 9 (1988) 4.

ClibPDF - www .fastio.com

http://www.fastio.com/

456 R. Winkelmann et ul. | Compur. Methods Appl. Mech. Engrg. 174 (1999) 433-436

2] G.C. Fox, R.D. Williams and P.C. Messina, Parallel Computing Works! (Morgan Kaufmann, 1994).

|3] EUROPORT, hup://www.gmd.de/SCAI/europort-1, 1996.

[4] C.Walshaw, M. Cross and M. Everett, Mesh partivoning and load-balancing for distributed memory parallel systems, in: B. Topping,
ed., Proc. Parallel & Distributed Computing for Computational Mechanics, Lochinver, Scotland, 1997.

[S] PR. Eiscman et al., GridPro v3.1, Users™ Guide and Reference Manual, 111 pp., 2nd edition. Program Development Corporation of
Scarsdale, Inc.. 1998,

[6] J. Hiuser et al., ParNSS: An Efficient Parallel Navier—Stokes Solver for Complex Geometries, AIAA 94-2263 (1996) 9 pp.

|7} J. Hiuser and R.ID. Williams, Strategies for Parallelizing 4 Navier-Stokes Code on the Inte] Touchstone Machines, Int. 1. Numer.
Methods Fluids 15 (1992) 51-58.

[E] M.R. Willcheek-Le Muir. A strategy for dynamic load balancing on highly parallel computers, IEEE Trans. Parallel Distnbuted Syst. 4
{1993) $79-993.

[9] R.D. Williams, Voxe] databases: A paradigm for parallelism with spatial structore. Conewrrency 4 (1992) 619.

[109] 1. Hiuser, J. Muylacrt. H.-G. Paap, M. Spel and PR, Eiseman, Gnd Generation for Spaceplanes, 3rd Space Course, University of
Stutigart, Germany (February 20-March 3, 1995) 66 pp.

[11] L Hiuwser, J. Moyluert and Y. Xia, Grid generation for the Halis configuration, in: B. Sont et al., eds.. Numencal Grid Generation for
Computational Fluid Dynamics (MSU Press, USA, 1996).

[12] A. Jameson and 8. Yoon, Lower upper implicit schemes with multiple grids for the Euler equations. AIAA). 25(7) {1987) 420-935.

113] J. Hiiuser, R.D. Williams and R. Winkelmann, Parallel Implementation of Large CFDY Codes, Huropean Shortcourse on Strategies and
Tools for Parallelising large Computational Mechanical Codes, 1996, 130 pp., available through F.Barkshire@gre.ac.uk.

[14] D.L. Whitfield, Newton-Relaxation Schemes for Nonlinear Hyperbolic Systems, MASL-EIRS-ASE-%0-3 (199()) 14 pp.

[L5] D.L. Whitficld, Perspective un Applied CFD, AIAA-G5-0349, 33rd Acrospace Sciences Meeting and Exhibit. January 9-12, 1995,
Reno, NV, USA.

[16] 6. Golub and JM. Orcga. Scientific Computing and Difterential Eguations (Academic Press, 19921

[17] R. Winkelmann. Strategics for parallel and numerical scalability of CFD codes, Ph.D. Thesis. University of Greenwich, London, UK.
1998,

ClibPDF - www .fastio.com

http://www.fastio.com/

INFORMATION FOR CONTRIBUTORS

Manuscripts should be sent in triplicate to one of the Editors. All manuscripts will be refereed. Manuscripts should preferably be in English, They should be
typewritten, double-spaced, first copics (or clear Xerox copies thereof) with a wide margin. Abstracts, foolnotes and lisls of references should also be
double-spaced. All pages should be numbered (also those containing references, tables and figure captions). Upon acceplance of an article, aushor(s) will be
asked to transfer copyright of the article to the publisher. This transfer will ensure the widest possible dissemination of information,

Abstracts
The text of a paper should be preceded by a summary in English. This should be shor, bt showld mention all essential poims of the paper.

Figures and tahles

The drawings for the figures must be originals, drawn in black India ink in large size and carefully lenered, or panted on a high-quality laser printer. The
lettering as well as the details sheuld have proportionate dimensions. so as not to become illegible or unclear after the usual reduction by the printers; in general,
the figures should be designed for a reduction factor of two or threc. Mathematical symbols should be entered in italics, where appropriate. Each figure should
have a number and a caption; the captions should be collected on a separate sheet. The appropriate place of a figure should be indicated in the margin. Tables
should be typed on separate sheets. Each table should have a number and a title. The appropriate places for the insertion of wbbes should be indicated in the
margin. Colour illustrations can be included and will be printed in colour at nu charge if, in the opinion of the Editors, 1the colour is essential. 1T this is not the
case, the figures will be printed in black and white unless the author is prepared to pay the extra costs arising from colour reproduction.

Formulae
Displayed formulae should be numbered and typed or cleardy written by hand. Symbols should be identified in the margin, where they accur for the first time.

References
In the text, reference 10 vther parts of the paper should be made by section (or equation) number, bui not by page number. References should be listed on a
separite sheet in the order in which they appear in the text.

COMPLETE INSTRUCTIONS TO AUTHORS are published in cvery last issue of a volume, and copics can also be obtained from the Editors and the
Publisher, Elsevier Science BV, P.O. Box 1991, 1000 BZ Amsterdam, The Netherlands.

Instructions for LaTeX manuscripts

The LaTeX files of papers that have been accepted for publication may be sent to the Publisher by e-mail or on a disketie (3.5" or 5.25" MS-DOS). If
the file is suitable, proofs will be produced without rekeying the text. The article should be encoded in Elsevier-LaTeX, standard LaTeX, or
AMS-LaTeX (in docurnent style “article™) The Elsevier-LaTeX package, together with instructions on how o prepare a file, is available from the
Publisher, This package can also be obtained through the Elsevier WWW home page (hitp://www.elsevier.nl/). or using anonymous FTP from the
Comprehensive TeX Archive Network (CTAN). The host-names are: fip.dante de. fip.tex.ac.uk, ftp.shsu.edu; the CTAN directories are: /pubftex/
macros/latex 209/ contrib/elsevier. fpub/archive/ macros/latex 209/ contrib/elsevier. fiex-archive/macros/laiex209/contrib/elsevier. respectively. Ne
changes from the accepted version are permissible. withour the explicit approval of the Editor. The Publisher reserves the right 1o decide whether 10 use
the author’s file or nor. If the fle is sent by e-mail. the name of the journal should be mentioned in the ““subject field” of the message to identify the
paper. Authors should include an ASCIT table (available from the Publisher) in their files 1o enable the detection of wansmssion errors.

Publication information:

Computer Methods in Applied Mechanics and Engineering (1ISSN 0045-7825). For 1998 volumes 151-163 are scheduled for publication. Subscription prices are
available upon request from the Publisher. Subscriptions are accepted on a prepaid basis only and are entered on a calendar vear basis. Issues are sent by surface
mail except 10 the following couniries where Air delivery via SAL mail is ensured: Argentina, Ausiralia, Brazil, Canada, Hong Kong, India, Israel, Japan,
Malaysia, Mexico. New Zealand, Pakistan, PR China. Singapore. South Africa, South Korea. Taiwan, Thailand. USA_ For all other countries airmail rates are
available upen request. Claims for missing issucs should be made within six months of our publication {mailing) date.

Orders, claims, and product enquiries: please contact the Customer Suppen Department at the Regional Sales Office neares1 you:

New York: Elsevier Svience, PO Box 945, New York, NY 101590945, USA: phone: 4+ 1) (212) 633 3730 [10]l free number for North American cusiomers:
1-BBR-4ES-INFO (437-4636)]; fax: (+ 1) (212) 633 3680; e-mail: usinfo-f@elsevier.com

Amsterdam: Elsevier Science, PO Box 211, 1000 AE Amsterdam. The Netherlands: phone: (+31) 20 4853757: fax: (+31) 20 4853432; e-mail:
nlinfo-f@elsevier.nl

Tokyo; Elsevier Science K K., 9-15 Higashi-Azabu 1-chome. Minato-ku, Tokyo 106, Japan: phone: {+811 (3) 5561 5033; fax: (+81) (3) 5561 5047; e-maik:
info@elsevier.co.jp

Singapore: Elsevier Science. No. 1 Temasek Avenue, #17-01 Millenia Tower, Singapore 039192: phone: (+65) 434 3727: fax: (+65} 337 2230: ¢-mail:
asiainfo@elsevier.com.sg

Rio de Janeiro: Elsevier Scicnce, Rua Sete de Setembro 111716 Andar, 20050-002 Centro, Rio de Janciro — RJ, Brazil, phone: {+55) (21) 509 5340; fax:
(+55) (21) 507 1991; e-mail: elsevier@campus.com.br [Note (Latin America}: for orders. claims and help desk information, please contact the Regional Sales
Office in New York as listed above]

ClibPDF - www .fastio.com

http://www.fastio.com/

	ComputerMethods\001.tif
	ComputerMethods\002.tif
	ComputerMethods\433.tif
	ComputerMethods\434.tif
	ComputerMethods\435.tif
	ComputerMethods\436.tif
	ComputerMethods\437.tif
	ComputerMethods\438.tif
	ComputerMethods\439.tif
	ComputerMethods\440.tif
	ComputerMethods\441.tif
	ComputerMethods\442.tif
	ComputerMethods\443.tif
	ComputerMethods\444.tif
	ComputerMethods\445.tif
	ComputerMethods\446.tif
	ComputerMethods\447.tif
	ComputerMethods\448.tif
	ComputerMethods\449.tif
	ComputerMethods\450.tif
	ComputerMethods\451.tif
	ComputerMethods\452.tif
	ComputerMethods\453.tif
	ComputerMethods\454.tif
	ComputerMethods\455.tif
	ComputerMethods\456.tif
	ComputerMethods\457.tif

