
A Tangled Web
Strategy for Numerical

and Parallel
Scalability in

Aerospace Simulation
Jochem Häuser

Dept. of Parallel Computing, Center of Logistics
and Expertsystems GmbH, Germany

Roy D. Williams
CACR, California Institute of Technology, USA

Ralf Winkelmann
Dept. of Parallel Computing, Center of Logistics

and Expertsystems GmbH, Germany

1. Parallelism for Large Scale CFD
Applications

Parallel computing has become a key component
of high performance computing in the 90’s. In
order to exploit this technology in science and
engineering, in particular for aerospace,
automotive, and turbomachinery applications as
well as in environmental simulation, highly
complex geometries have to be dealt with, often
generated by CAD systems. In order to bring CFD
in the design loop, quick turnaround times are
mandatory.

Grids are multiblock hexahedra allowing any kind
of topology and comprise any number of blocks.
Grid generation is completely non-interactive.
Only a wireframe and the geometry description
are provided. Surface and volume grids are
generated together. Grids are slope continuous.
Grids are constructed using a high-level grid
generation language. Grids consist of objects that
are reusable. A problem/user specific grid
database may be constructed that allows to use
more complex entities from which to generate

new grids. Complex grids are built in an object
oriented fashion.

2. Parallelization Strategy for CFD
Codes

There are basically three ways of parallelizing a
code. First, a simple and straightforward approach
is to parallelize the do loops in the code. Many
so called automatic parallelizers analyze do loops
and suggest a parallelization strategy based on this
analysis. This concept, however, is not scalable to
hundreds or thousands of processors, and results
in a very limited speedup.

Most applications in science and engineering can
be described by a set of equations in some kind of
solution space. A second approach therefore isto
parallelize the numerical solution process for
these equations. For example, if a matrix-vector
multiplication occurs, this multiplication could be
distributed on the various processors and
performed in parallel. Again, scalability to a large
number of processors cannot be obtained.
Moreover, this technique would work only for
large regular matrices. If a problem was
represented by a large number of smaller matrices
(often the case in practice), parallelization would
be impossible.

The third approach is denoted asdomain
decomposition, sometimes also referred to as
grid partitioning . The idea is simple. The
solution domain is subdivided into a set of
subdomains that exchange information to update
each other during the solution process. The
numerical solution takes place within each
domain, and is thus independent of the other
domains. The solution space can be the actual
space-time continuum, or it can be some abstract
space. For the computer simulation, this space is
discretized and thus is described by a set of points.
Domain decomposition is the most general and
versatile approach. It also leads to the best parallel
efficiency, since the number of points per
subdomain (or block) can be freely varied as well
as the number of subdomains per processor. A
large number of codes in science and engineering

paper to be published in the proceedings of CFD 97, University of Victoria, BC, 25-27 May 1997

Fig 1: Generic aircraft configuration.

There is, however, an important aspect in
parallelization, namely the geometrical complexity
of the solution domain. In the following, a brief
discussion ongeometrical complexity is given and
how it affects parallelization. If the solution domain
comprises a large rectangle or box, domain
decomposition is relatively straightforward. For
instance, the rectangle can be decomposed into a set
of parallel stripes, and a box can be partitioned into
a set of planes. This leads to a one-dimensional
communication scheme where messages are sent to
left and right neighbors only. However, more
realistic simulations in science and engineering
demand a completely different behavior. For
example, the calculation past an entire aircraft (see
Fig. 1) configuration leads to a partitioning of the
solution domain that results in a large number of
subdomains of widely different size, i.e. the number
of grid points in the various blocks differs. As a
consequence,it is unrealistic to assume that a
solution domain can be partitioned into a
number of equally sized subdomains. In addition,
it is also unrealistic to assume a nearest neighbor
communication. On the contrary, the set of
subdomains is unordered (unstructured) on the
subdomain level, leading to random
communication among subdomains. In other
words, the communication distance cannot be

limited to nearest neighbors, but any distance on the
processor topology is possible (processor topology
describes how the processors are connected, for
instance as a 2D mesh, as a torus or as a hypercube
etc.). Hence, the efficiency of the parallel algorithm
must not depend on nearest neighbor
communication. Therefore, the parallelization of
solution domains of complex geometry requires a
more complex communication pattern to ensure a
loadbalanced application. It also demands more
sophisticated message passing among neighboring
blocks, which may reside on the same, on a
neighboring, or on a distant processor. The basic
parallelization concept for this kind of problem is
the introduction of a new type of boundary
condition, namely the inter-domain boundary
condition that is updated in the solution process by
neighboring subdomains via message passing.
Parallelization then is simply achieved by the
introduction of a new type of boundary
condition. Thus, parallelization of a large class of
complex problems has been logically reduced to the
well known problem of specifying boundary
conditions.

1. A Tangled Web for the Solution of the
Navier-Stokes Equations

It is important to note that the successful solution
of the large scale parallel N-S equations can only
be performed by aTriad numerical solution
procedure. Numerical Triad is the concept of using
grid generation, domain decomposition, and the
numerical solution scheme itself. Each of the
three Triad elements has its own unique
contribution in the numerical solution process.
However, in the past, these topics were considered
mainly separately and their close interrelationship
has not been fully recognized. In fact, it is not clear
which of the three topics will have the major
contribution to the accurate and efficient solution of
the N-S equations. While it is generally accepted
that grid quality has an influence on the overall
accuracy of the solution, the solution dynamic
adaptation process leads to an intimate coupling of
numerical scheme and adaptation process, i.e. the
solution scheme is modified by this coupling as
well as the grid generation process. When domain
decomposition is used, it may produce a large
number of independent blocks (or subdomains).
Within each subdomain a block-implicit solution
technique is used, leading to a decoupling of grid
points. Each domain can be considered to be
completely independent of its neighboring
domains,parallelism simply being achieved by
introducing a new boundary condition, denoted
as inter-block or inter-domain boundary condition.
Updating these boundary points is done by
message-passing. It should be noted that exactly
the same approach is used when the code is run in
serial mode, except that no messages have to be
sent to other processors. Instead, the updating is
performed by simply linking the receive buffer of a
block to its corresponding neighboring send buffer.
Hence,parallelizing a multi-block code neither
demands rewriting the code nor changing its
structure.

A major question arises in how the decomposition
process affects the convergence rate of the implicit
scheme. First, it should be noted that the N-S
equations are not elliptic, unless the time derivative
is omitted and inertia terms are neglected (Stokes
equations). This only occurs in the boundary layer
when a steady state has been reached or has almost
been reached. However, in this case the Newton
method will converge quadratically, since the initial

solution is close to the final solution. The update
process via overlap boundaries therefore should be
sufficient. In all other cases, the N-S equations can
be considered hyperbolic. Hence, a full coupling of
all points in the solution domain would be
unphysical, because of the finite propagation speed,
and is therefore not desirable and not needed. To
retain the numerical order across block (domain)
boundaries, an overlap of two points in each
coordinate direction has been implemented. This
guarantees that the numerical solution is
independent of the block topology. The only
restriction comes from the computation of flow
variables along the diagonals on a face of a block,
needed to compute the mixed derivatives the
viscous terms.

To continue the discussion of convergence speed it
should be remembered that for steady state
computations implicit techniques converge faster
than fully explicit schemes. The former are
generally more computationally efficient, in
particular for meshes with large variations in grid
spacing. However, since a full coupling is not
required by the physics, decomposing the solution
domain should result in a convergence speedup,
since the inversion of a set of small matrices is
faster than the inversion of the single large matrix,
although boundary values are dynamically updated.
On the other hand, if the decomposition leads to a
blocksize of 1 point per block, the scheme is fully
explicit and hence computationally less efficient
than the fully implicit scheme. Therefore, an
optimal decomposition topology must exist that
most likely depends on the flow physics and the
type of implicit solution process. So far, no theory
has been developed. However, a number of
numerical experiments has been performed with
the ParNSS code, clearly demonstrating the
convergence speedup. Block numbers have been
varied from 2 to 1024 in 2D and from 6 to 384 in
3D, using an otherwise identical grid.

In this paper, the basis of the numerical solution
technique is the Newton method, combined with a
Conjugate-Gradient technique (GMRES) for
convergence acceleration within a Newton-
Iteration. In the preconditioning process used for
the Conjugate-Gradient technique, domain
decomposition is used to decrease the condition
number (ratio of largest to smallest eigenvalues) of
the matrix forming the left hand side, derived from

the discretized N-S equations. In other words, the
eigenvalue spectrum is compressed, because the
resulting matrices are smaller. It is shown in [1]
that this ratio is a measure of the convergence
speed for generalized conjugate residual
algorithms. Having smaller matrices the condition
number should not increase; using physical
reasoning it is concluded that in general the
condition number should decrease.

From these remarks, it should be evident that only a
combination of grid generation scheme, numerical
solution procedure, and domain decomposition
approach will result in an effective, general
numerical solution strategy for the parallel N-S
equations on complex geometries. Because of their
mutual interaction these approaches must not be
separated. Thus, the concept of numerical solution
procedure is much more general than devising a
single numerical scheme for discretizing the N-S
equations. Only the implementation of this
interconnectedness in a parallel solver will lead
to the optimal design tool.

2. Speedup Results by Tangled Web
Approach

So far we have investigated the following
acceleration schemes:

1. Adaptive coupling during the solution process,
that is, the computation is started with an explicit
scheme, followed by a block implicit GMRES
technique using a large number of blocks.
Automatic block merging is used to increase
coupling strength. Merging of blocks is based on
the residual of the solution. Results of this strategy
are presented in Fig.2.

2. Results in Table 1 are obtained by varying block
number only, that is, the computational scheme is
not changed.

3. Computing a coarse grid flow solution and
transferring it onto a finer grid. Repeating this
process in sequence, i.e. using a sequence of grids
from coarse to fine, accelerates convergence to a
steady state solution. Results are given in Table 2.

4. Combination of acceleration techniques: Grid
sequencing plus adaptive coupling are presented in
Fig. 4 and Fig 5.

of block # of points per block # of iterations computing time speedup

2 24000 253 52519 1.00

32 1560 305 33930 1.55

120 435 317 22577 2.326

256 213 333 19274 2.725

480 119 349 17752 2.958

1024 61 380 18012 2.916

Table 1: Results for solution acceleration by variation of block number for a 48000 point NACA0012 airfoil.
The Euler solution is computed by the implicit GMRES algorithm for a Mach number of 1.7. The
computation stops after the residual drops to 10e-12. The optimal speedup is obtained for 480 blocks.

1e-05

0.0001

0.001

0.01

0.1

1

10

0 5 10 15 20 25 30 35 40 45 50

dU
/d

t R
es

id
ua

l

Node-Hours

Explicit

Block Implicit, 128

Block Implicit, 8

S
ta

ge
 1

S
ta

ge
 2

S
ta

ge
 3

Block Implicit, 128

Block Implicit, 128

Block Implicit, 32

Block Implicit, 32

Block Implicit, 32

Block Implicit, 8

Block Implicit, 8

Explicit

Fig 2: Solution acceleration using adaptive coupling. Computation was done for a NACA0012 airfoil.

Fig 3: NACA 0012 airfoil. Navier-Stokes grid and Mach number contour plot. The fine grid consists
of 26 blocks and some 29,000 cells. The coarse grid comprises about 7,500 cells.

Grid level grid points [CPU+SYS-time] s [total
CPU+SYS-time] s

3 832 134 134

2 3162 775 909

1 12322 6010 6919

0 48000 23741 30660

0 (no grid sequencing) 48000 51578 51578

Table 2: Results for solution acceleration by using multi-level grids for a 48,000 point NACA0012 airfoil.
The Euler solution is computed by implicit GMRES for a Mach number of 1.7. The algorithm switches to the
next finer grid, if the residual has dropped to 10e-12 on the coarse grid level. A speedup of 1.68 is obtained
by this techniques.

26 blocks, coarse grid
total time: 190s

68 block grid
total time: 632s

40 block grid
total time: 642s CR: 10

4–

Computed Residual (CR):10
10–

40 block grid
total time: 756s

26 block grid
total time: 760s CR: 10

5–

68 block grid
total time:1008s

40 block grid
total time:1005s

26 block grid
total time:1063s CR: 10

7–

Fig 4: Grid sequencing, in combination with adaptive coupling, was used in the Navier-Stokes computation
of the NACA0012 airfoil. First, a converged solution was computed on the 26 block coarse grid (see Fig.
5a) which served as initial condition for the computations in the steps 1 to 3. It turns out that the
combination of grid sequencing and adaptive coupling results in substantial speedups in comparison with
fully explicit or a block implicit solution on a fine grid only. The speedups are 5.91 and 2.11, respectively . It
should to be mentioned that further improvements of the total execution time will be achieved by using
dynamic load balancing.

68 block grid
total time: 782s

Initial Solution:

Step 1:

Step 2:

Step 3:

26 block grid
total time: 749s

Computing time with grid sequencing (block implicit)

Computing time without grid sequencing

68 block grid
total time:2120s

26 block grid
total time:5938s

CR: 10
7–

Explicit Block Implicit

The 26 block explicit computation is
slightly faster than the 40 and 68 block
computation because of reduced
communication overhead.

It should be noted that the 68 block
implicit computation is faster than the 26
and 40 block computation, respectively.

This work is part of the PhD thesis of Ralf Winkelmann.

Fig 5: A sequence of coarse and fine grids along with varying number of blocks has been used to compute the
steady state solution. Decomposing and coarsening of grids is handled automatically byParNSS. In addition,
the code performs the transfer of the numerical solution from the coarse to the fine grid. In case a varying
number of blocks is computed, the solution transfer is also handled byParNSS.

a) coarse grid
26 blocks

b) fine grid
26 blocks

c) coarse grid
40 blocks

d) fine grid
40 blocks

e) coarse grid
68 blocks

f) fine grid
68 blocks

References

[1] Gene Golub, James M. Ortega, Scientific
Computing, Parallel Computing, Academic
Press, INC, 1993, ISBN 0-12-289253-4

[2] R. D. Williams, J. Hauser, and R.
Winkelmann, “Efficient Convergence
Acceleration for a Parallel CFD Code.” In:
Parallel Computational Fluid Mechanics 1996,
A. Ecer et. al., Eds., Elsevier North-Holland,
to be published.

[3] J. Hauser, R. D. Williams, H.-G. Paap, M.
Spel, J. Muylaert, and R. Winkelmann, “A
Newton-GMRES Method for the Parallel
Navier-Stokes Equations.” In: Parallel
Computational Fluid Mechanics 1995, A. Ecer
et. al., Eds., Elsevier North-Holland, 1995.

[4] J. Hauser, M. Spel, J. Muylaert, and R.
Williams, ParNSS: An Efficient Parallel
Navier-Stokes Solver for Complex
Geometries, AIAA paper 94-2263.

[5] J. Hauser and R. D. Williams, “Strategies for
Parallelizing a Navier-Stokes Code on the
Intel Touchstone Machines,” Int. J. Numerical
Methods in Fluids, 15(51), 1992.

[6] P. R. Eiseman et al., GridPro/az3000 User’s

Manual, Program Development Corporation,
White Plains, NY, Oct. 1996.

[7] J. Hauser, J. et al., “Euler and Navier-Stokes
Grid Generation for Halis Configuration with
Body Flap.” In: Numerical Grid Generation
for Computational Fluid Dynamics, B. Soni et
al., Eds., NSF Engineering Research Center
for Computational Field Simulation,
Mississippi State Univ., ISBN 0-9651627-0-2

[8] R.D. Williams, J. Hauser and R.
Winkelmann, Hypersonic Flow Around the
Halis Orbiter, Concurrent Supercomputing
Consortium, California Institute of
Technology Caltech Anual Report 1996, http:/
/www.cacr.caltech.edu/publications/annreps/
annrep96/cfd1.html, 1996

[9] R.D. Williams, J. Haeuser and R.
Winkelmann, Annual Report 1995 (page 56-
57), Concurrent Supercomputing Consortium,
California Institute of Technology, USA and
http://www.cacr.caltech.edu/publications/
annreps/annrep95/cfd1.html

