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An operations research method is presented for deriving a conserva-
tive, non-negative computational scheme for advective transport.
Finite elements in space and time are used to approximate the solu-
tion, and the integral of the square of the residual is minimized
over the entire spatial domain and over a single temporal element.
Negative values are excluded by inequality constraints and conser-
vation is enforced by Lagrange multipliers. The method is then
generalized to show how negative values arising in conventional
finite-difference methods can be eliminated.
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Advective transport, the process by which anything is
carried along by a moving fluid, has two important pro-
perties: first, the total amount of whatever is transported
remains the same; and second. regardless of how they
are redistributed by the flow, positive quantities, such
as concentrations of chemical pollutants. must remain
positive. It would be highly desirable if numerical simu-
lations of advective transport would also have these pro-
perties, but often this is not the case.

Truncation errors necessarily cause the simulations
to differ from the exact solutions. For example, the so-
calied upwind scheme! is both conservative and positive,
but it is also strongly diffusive; unless very fine grids
are used, computed distributions spread out until they
hardly resemble the exact solutions. On the other hand,
the Leith-Lax-Wendroff scheme™ is only weakly diffu-
sive. It is characterized by the appearance of unwanted
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ripples, due to numerical dispersion, which plague many
computational schemes. An averaging process can be
used to smooth out the ripples, but this amounts to
increasing the level of diffusion. The problem of ripples
versus diffusion has been a subject of much study; for
recent examples, see references 5 and 6.

Another form of truncation error, which is found in
time-tmplicit schemes, is nonlocality. Because of the
algebraic coupling of the solution at two adjacent time
leveis, what happens at a single point affects the solution
far away. So long as resolution is adequate, the magni-
tude of remote effects is small. For the purposes of this
paper, nonlocality is considered to be acceptable, and
attention will be focused on the question of nonphysical
negative values.

The negative values are simply a special case of the
more general problem of ripples caused by dispersive
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Figure 1 Dispersion curves for error-minimizing scheme for various Courant numbers. Departure of real part of frequency from
linearity indicates that poorly resolved waves disperse: presence of negative imaginary part of frequency indicates that poorly
resolved waves are damped, This scheme is stable for all Courant numbers
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Figure 2 Dispersion curves for Leith-Lax-Wendroff scheme for various Courant numbers. Curves for y= (0.5} are identical with
those for ervor-minimizing scheme; those for y=1 are identical with those for partial-differential equation, Scheme is unstable

for ¥>1

errors. It is possible to address the more general pro-
blem by exploiting the monotonicity property of advec-
tive transport, i.e. that no new maxima or minima
should appear as the distribution evolves. This has been
done by a method called flux correction,”™ which
involves the combination of a higher order scheme lead-
ing to oscillations and to a lower order scheme that is
strongly diffusive. Flux correction is similar to local
smoothing in that local minima are filled-in from adjac-
ent maxima. Preliminary results indicate that the
method presented here, within the restricted context
of negativity, can be generalized to address the more
general question of monotonicity. Such a generaliza-
tion, however, is beyond the scape of this paper.

The intent of this paper is to follow the consequences
of three simple assumptions to obtain a scheme for com-
puting advective transport. The first assumption is that
the scheme should minimize some measure of computa-
tional error. The other two are that the scheme be non-
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negative and conservative. Because of the reasonable
nature of these assumptions, the outcome should be
interesting and instructive.

Derivation of computationa! scheme

In order to focus on the properties of positivity and
conservation, it is sufficient to restrict attention to the
simple case of transport by one-dimensional, steadv.
uniform flow_ I the concentration of advected materialis
represented by C(x, 1), where x and r are spatial and tem
poral coordinates, respectively, and if u is the constant
advecting velocity . thenthe evolutionof Cisgoverned by:

aC aC
—+u—=20 (1)
ot ox

At the inflow boundary, the value of C should be speci-
fied, whilst no boundury condition is required at the
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Figure3 Dispersion curves for upwind scheme for various Courant nurmbers. Scheme is unstable for y> 1 and y< 0

outflow boundary. For simplicity, periodic boundary
conditions are assumed. When an initial distribution is
given, the solution of equation (1) at later times is stmply
a uniform translation of the initial distribution. (In two
or three dimensions, constant flow generalizes to incom-
pressible flow and the distribution remains constant rela-
tive to the moving fluid.)

If the solutions to equation (1) are approximated by
a function ¢(x, ¢) that is piecewise lincar in both space
and time, then the residual:

R(x, 0= (% + u%) é(x, 1) (2)

represents the truncation error. An error density can
be defined as any positive function of the residual that
vanishes whenever the residual vanishes. Here, it is
taken to be the square of the residual, because this leads
to the least complicated computational scheme. An
error functional is defined as an integral of the error
density over the entire spatial domain and over a single
step forward in time. The ‘best’ piecewise bhilinear
approximation to equation (1) then corresponds to the
minimum of this error functional.

The choice of a piecewise bilinear approximation is
not essential to this approach. For example, sinusoids
might be used to characterize both spatial and temparal
variations. What is essential is that the residual resulting
from the approximation be used to construct an error
functional. Although this approach of minimizing an
error functional is quite general, it has not been widely
used for time-dependent problems. Zienkiewicz® briefly
mentions this possibility.

Within the context of this paper, the advantage of
this approach is that it allows for a systematic and mathe-
matically well-defined treatment of the positivity con-
straint. Because the solution is determined by
minimizing an error functional, the search for the mini-
mum can be restricted to non-negative functions. A
second advantage is that conservation can be guaranteed
through the use of a Lagrange multiplier.

If the constraints of positivity and conservation are
disregarded, then the minimum of the error functionai
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is determined by the condition that its derivatives
vanish. The error functional is an integral over a single
temporal element, corresponding to a single step for-
ward in time. Since the solution is known at the begin-
ning of the time-step, only the values at the end of the
time-step should be allowed to vary. Once the minimum
is found. the process can be repeated to advance step-by-
step in time,

If ¢! represents the value of the piecewise bilinear
approximating function at x = jA and ¢ = (1 + 1)7. then
the vanishing of the derivative of the error functional
with respect to ¢** ! yields the finite difference equation:

If1 1
-1—_[6 (c/' + A + ¢y — g(c,’;,
i

+ 4C!" + C;Ll)] + E(Cﬁ"l — C}"—I)

ut[ 2
= el L——Az (/3 = 2/ + el

1 n
+_3AZ e/ -2cf + ) (3)

This can readily be seen to be a time-implicit generaliza-
tion of the Leith-Lax-Wendroff scheme:

1 u
._r(cln+l - C;ﬂ) + A (C)rl+l - C‘,'".])
ulr[ 1
= ?[E (/i1 —2ef + C}'—l)] (4)

Both contain discrete analogs of the partial derivatives
in equation (1) and ‘artificial diffusion’ terms that
vanish in the limit of infinite resolution. {Although
these terms seem to model a diffusive process, both
schemes are actually only weakly diffusive.} The differ-
ences between equations (3} and (4) can all be attributed
to the spatial and temporal averages that are character-
istic of finite element methods. For the special case of
ut/4=+(0.5)), the two schemes are, in fact, identical.
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Both of these schemes are conservative, subject to
ripples. and, thus, to nonphysical negative values.
Since the upwind scheme:

1 u
;(ﬁ"” - ,‘")"’E(C;‘"—C?—l) =0 (5)

is non-negative, it will be used for comparison. It is
conservative but highly diffusive.

The nature of the dispersive and diffusive errors of
the three schemes is revealed by a standard Fourier ana-
lysis. As these are linear equations with constant coeffi-
cients, the solutions can be written as superpositions
of complex exponentials, exp[i(kx — wi)}, with frequen-
cies and wavenumbers related by dispersion equations.
For equation (1), the dispersion equation is:

w=uk (6)

There is no diffusion because w is real, and because
the phase speed, u = w/k, is constant, there is no disper-
sion. The dispersion equations for computational
schemes (3), (4), and (5), respectively, are:

w=ilog{[2 + coskA — ¥(1 — coskA)/r

— 3iysinkA]/[2 + coskA

+29%(1 — coskA)]} /T M
w=ilog{l — ¥*(1 — coskA)} — iysinkA]/~ (8)
w=ilog[l — (1 — coskA) — iysinkA]/r 9)

where y = ur/Ais the Courant number and i = (~1)}.

The real and imaginary parts of the frequency are
shown in Figures 1-3 as functions of the wave number.
The fact that the real parts of equations (7)—(9) all
deviate from equation (6) indicates that there are disper-
sive errors for all three computational schemes. By
expanding, it can be readily seen that the imaginary
part of the frequency for the upwind scheme is of order
(kA)?, as for Fickian diffusion. On the other hand,
because the imaginary parts of both equation (7) and
(8) are of order (kA)*, the error minimizing scheme and
the Leith-Lax-Wendroff schemes are only weakly diffu-
sive, with much slower spreading than for Fickian
diffusion.

Because the error functional is a quadratic function
of the nodal values ¢!, the effects of the constraints
can easily be visualized. Since the error increases para-
bolically away from its minimum values in every direc-
tion, it follows that, when the minimum corresponds
to negative values, the minimum for non-negative values
must lie on the boundary of the positive sector. In other
words, the non-negative minimum can be found from
the negative absolute minimum by following the least
steep path through the multidimensional space to the
boundary of the positive sector. Roughly, this amounts
to resetting the negative values to zero, but, in reality,
all values are adjusted somewhat. Although the absolute
minimum is conservative, the least steep path away from
the minimum does not lie in the plane where conserva-
tion is satisfied. The non-negative minimum found by
foilowing the least steep path corresponds to discarding
the unwanted negative values without also discarding
an equal positive quantity, Therefore, to satisfy both
non-negativity and conservation, it is necessary to follow
the least steep path in the plane determined by the con-
servation constratnt.

www . fastio.com

Conservation can be enforced through the use of a
Lagrange multiplier. Positivity is an example of an
inequality (Kuhn-Tucker) constraint and can be
enforced through the use of slack variables,'® but a
simpler approach is taken here. When the solution to
equation (1) is non-negative, the negative values result-
ing from equation {3) will be small so long as resolution
is adequate. In the limit of infinite resolution, the nega-
tive values converge to zero. Thus, it is reasonable toa
assume that the non-negative minimum would have
every negative value reset to zero (none should become
positive). From this assumption, it is possible to derive
finite difference equations to determine how the positive
values should be readjusted.

The assumption that the path from the absolute mimi-
mum to the boundary of the positive sector intersects
the portion of that sector where all the negative values
are reset to zero is quite reasonable. It can be shown
to be true for the case when there are less than five
grid points, therefore, it might be possible to prove it
for an arbitrary number of grid points. (For the special
case of y2 = 0.5, it is easily shown 10 hold for any number
of grid points.) In any case, any error due to this approxi-
mation should be of the same order as the increase in
truncation error caused by replacing the absolute mini-
mum with the non-negative minimum.

The first step is to solve equation (3) for the absolute
minimum of the error functional. If there are no nega-
tive values, then the solution is both non-negative and
conservative. If, however, there are any negative values,
equation (3) must be replaced by a new set of equations:
each variable that is negative or zero at the absolute
minimum should be set equal to zero; for each variable
that is positive at the absolute minimum, there is a cor-
responding equation in the form:

1{1 Sl
}[E( AR+ At o) — glehitag+ c;il)]

u n
+'2E(Cf+t —¢Ly)

a7 2
=u_2r[w (eff! = 27 + )
1 A
+E(Cf,l —2(,'1,""{‘(';11) _E (10)

and the Lagrange multiplier A is determined by the con-
servation constraint:

J J
>egrtt=> ¢ (11)
j=1 j=1

If there are any new negative values, then this second
step must be repeated.

Equation (1) is identical to equation (3) except for
the term involving the Lagrange multiplier. This term
serves to reduce the excess in the positive values that
results from discarding the unwanted negative values.
When y = 1(0.5). these equations are time-explicit and
it is easy to see that each positive variable is reduced
by the same amount. Whatever the Courant number,
the compensation for discarding negative values is glo-
bal rather than local. This should not be thought of
as an ‘instantaneous’ redistribution of advected material
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from great distances to fill in the negative values.
Instead, it should be considered to be a redistribution
of truncation error.

Suppose that there is a more or less constant, positive
background level far from the region where negative
vafues might develop in the absence of the positivity
constraint. The effect of the Lagrange multiplier is then
to slightly reduce the level of this background. The
amount of this reduction is certainly less than the peak
level of negative values discarded, because the compen-
sation has been spread over the entire domain. The trun-
cation error at the remote points is increased pointwise
by less than the amount that it is reduced at points cor-
responding to negative values. However, because the
absolute minimum is less than the non-negative mini-
mum, the total truncation error is increased.

It is interesting to note that many computational
schemes, the Leith-Lax~Wendroff scheme for example,
can be considered to correspond to the minimum of
some error functional. It is not necessary to derive the
error function from some residual because it can be
determined by integration. From this point of view, it
is easy to modify such a scheme to incorporate the con-
straints of positivity and conservation simply by follow-
ing the same procedure described above. In the next
section computational results will be presented for such
a non-negative Leith-Lax—Wendroff scheme.

Results

Results are presented for five computational schemes:
the error minimizing scheme without correction for
negative values; the error minimizing scheme with cor-
rection for negative values; the upwind scheme; the
Leith-Lax-Wendroff scheme; and a Leith-Lax-Wen-
droff scheme modified to eliminate negative values.

In every case, a spatial lattice of 100 points was used,
with initial conditions: -

_[t,j=1,...,10
=
0, j=11,...,100 (12)

As the short-wave components needed to form the
corners of this initial distribution cannot be resolved
by the spatial lattice, the simulations can be expected
to be characterized by severe numerical dispersion.
Graphical results depict the shape of the pulse at the
half-way point as it propagates repeatedly from left to
right across the periodic lattice. Resulis are shown for
times ¢ = 50A/u and ¢, = 550A/u, corresponding to the
first and sixth transits of the grid respectively. The exact
solution, namely propagation without change of shape,
is also shown.

Thecurvesin Figuredcorrespondtotheerrorminimiza-
tion scheme without correction for negative values. Five
cases are shown, corresponding to the same five values
of the Courant number represented by the dispersion
curves in Figure 1. The dispersion of the distribution
into a wavetrain is evident at all Courant numbers. The
computational results concur with expectations based
on the dispersion curves: the shortest, most dispersed
waves have been damped; the simulated speed of advec-
tion decreases with increasing Courant number; and the
pulse is too poorly-resalved to be accuratety simulated
aty=>5.

The curves in Figure 5 correspond to the error minimi-
zation scheme with solutions constrained to be non-
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1=0.25

Figure 4 Computational results for propagation of initially trap-
zoidal puise obtained using error-minimizing scheme for various
Courant numbers. Curves shown for times t,=504/u and t;
= 550 A/ u, corresponding to midway point of first and sixth tran-
sits of pulse across periodic grid. Exact solution also shown for
comparison

negative and conservative. It is interesting to note that,
even though the error for each time-step is less when
negative values are allowed, the results of many steps
might be judged better in Figure 5. One possible reason
for this is that correcting for negative values avoids syste-
matic error that otherwise accumulates when stepping
forward in time. Another is that, since the definition
of error is based on the residual rather than directly
on the solution, correcting for negative values might
indeed give more accurate solutions. No effort has been
made to investigate either of these possibilities. In any
case, the non-negative results are very good.

Results for the upwind scheme are shown in Figure
6. The same cases are shown as in Figures 4 and 3,
except that y=3 is omitted because of instability. For
y=1, this scheme is exact, but for other values it is
so highly diffusive that there is little resemblance
between exact and computed solutions. Because diffu-
sive errors dominate the dispersive errors, this scheme
produces no negative values.

Aithough the upwind scheme is unstable for Courant
numbers greater than unity, by enforcing conservation
it is possible to use large time-steps and still not get
exponentially-growing solutions. This does not mean,
however, that the solutions will be reasonable. The solu-
tion will develop local spikes that become saturated after
growing to the limit allowed by conservation.

Figure 7 presents results for the Leith-Lax—Wendroff
scheme and Figure 8 presents corresponding results for
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Figure § Computational results obtained using error-minimiz-
ing scheme and allowing only non-negative values for same
cases asin Figure 4

Figure 7 Computational results obtained using Leith—Lax-
-Wendroff scheme for same cases as in Figure 6
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Figure 6 Computational results obtained using upwind scheme
for same cases as in Figures 4 and 5, except no results shown
fory=5%

a Leith-Lax-Wendroff scheme modified to forbid nega-
tive values. The curves in Figures 7 and 8 for y = (0.5)i
are identical to their counterparts in Figures 4 and 5,
since the schemes are identical for this Courant number.
As for the upwind scheme, these results are exact for
¥ = 1; no results are shown for y= 5 because of instabi-
lity. The modified Leith-Lax—Wendroff scheme gives
quite good results; correcting for negative values
changes the solution very little where it agrees well with
the exact solution and improves it where it disagrees
most. Of the schemes discussed here, the non-negative

|

1,

4
v = {05

Figure 8 Computational results obtained using Leith-Lax-
~Wendroff scheme modified to allow only positive values for
same cases as in Figure 7
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Leith-Lax~-Wendroff scheme provides the best accuracy
for fixed computational expense. In addition, it should
be competitive in comparison with other schemes.

Conclusions

This paper should be regarded as a comment on the
nature of truncation error rather than as an advertise-
ment for a particular computational scheme. All
schemes necessarily exhibit truncation error; what
makes one scheme less desirable than another is that
its truncation errors take a form that is unacceptable
for the intended application, The example discussed
here is the advective transport of an intrinsically non-
negative quantity, where the undesirable effects of trun-
cation error are excessive diffusion and/or negative
values. The approach has been to examine the conse-
quences of minimizing a reasonable measure of trunca-
tion error under the constraints that the solution must
be both non-negative and conservative.

This approach has produced three results. First, mini-
mization of truncation error without regard to negative
values or conservation has yielded a time-implicit finite
difference scheme with attractive properties: It is quite
accurate; it is conservative without imposing conserva-
tion as a constraint; it is only weakly diffusive; and the
dissipation affects only those wave components that
suffer from significant phase-speed errors. Because it
is time-implicit, however, it is not likely to be cost-com-
petitive for most applications.

The second result is a scheme that restricts the mini-
mum truncation error to non-negative, comservative
solutions. Pat simply, this amounts to discarding the
unwanted negative values produced by the uncon-
strained scheme and then reducing the positive values
s0 that conservation is maintained. The details of how
the positive values should be reduced are dictated by
the error-minimization formalism. In practice, all that
is required is an iterated solution to equations similar
in form to the unconstrained equations, but with ad-
ditional decay terms involving the Lagrange multiplier
used to enforce conservation.

The third result is a prescription for enforcing non-
negativity and conservation with any time-explicit
advection scheme: Discard all negative values and com-
pensate by reducing all positive values equally until con-
servation is recovered. This prescription is attractive
because it is simple and easy to apply. In fact, it is the
sort of thing that might have been done in the past for
expediency, but without theoretical support.

The method of minimizing truncation error to derive
finite difference equations is quite general and can be
applied to a wide variety of problems. When applied
to a set of coupled partial differential equations, the
error density must be constructed from the residuals
of each equation; an obvious choice is the sum of the
squares of the residuals. However, because different
physical gquantities have different units, each term
should have an appropriate dimensional coefficient.
Examples of application of this method to the shallow
water wave equations are discussed in references 11 and
12.

There is also no problem in applying this method to
problems with two or three spatial dimensions. As the
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number of dimensions increases, however, and becayse
the finite difference forms involve spatial and temporaj
averages, the number of terms in the resulting finjte
difference equations also increases. Another feature
observed when this method is applied to partial-differeq.
tial equations with many terms is the appearance of 3
multitude of finite difference terms for which there are
no partial-differential counterparts. These additional
terms, which vanish in the limit of infinitely fine grid
spacing, are like the artificial-viscosity terms of the Lax-
—Wendroff method and their purpose is to ensure that
truncation error is indeed minimized. The proliferation
of terms, together with the fact that the equations are
time-implicit, render error minimization per se unattrac-
tive for most applications.

The method for incorporating inequality and conser-
vation constraints is also quite general and can also be
used for a wide class of problems. For the methed to
be conceptually clear, it should be used in conjunction
with truncation error density. As in the case of the
Leith-Lax-Wendroff scheme, however, the error den-
sity does not have to be specified a priori, so the unat-
tractive features (multiplicity of terms and time-implicit
structure) can be avoided.
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